Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.11380
Cited By
On the Interconnections of Calibration, Quantification, and Classifier Accuracy Prediction under Dataset Shift
16 May 2025
Alejandro Moreo
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On the Interconnections of Calibration, Quantification, and Classifier Accuracy Prediction under Dataset Shift"
22 / 22 papers shown
Title
Quantification using Permutation-Invariant Networks based on Histograms
Olaya Pérez-Mon
Alejandro Moreo
Juan José del Coz
Pablo González
MQ
35
2
0
22 Mar 2024
Kernel Density Estimation for Multiclass Quantification
Alejandro Moreo
Pablo González
Juan José del Coz
32
7
0
31 Dec 2023
Invariance assumptions for class distribution estimation
Dirk Tasche
OOD
61
4
0
28 Nov 2023
Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching
Bastien Dussap
Gilles Blanchard
Badr-Eddine Chérief-Abdellatif
OOD
39
8
0
07 Jun 2023
Leveraging Unlabeled Data to Predict Out-of-Distribution Performance
Saurabh Garg
Sivaraman Balakrishnan
Zachary Chase Lipton
Behnam Neyshabur
Hanie Sedghi
OODD
OOD
78
131
0
11 Jan 2022
Soft Calibration Objectives for Neural Networks
A. Karandikar
Nicholas Cain
Dustin Tran
Balaji Lakshminarayanan
Jonathon Shlens
Michael C. Mozer
Becca Roelofs
UQCV
88
90
0
30 Jul 2021
Predicting with Confidence on Unseen Distributions
Devin Guillory
Vaishaal Shankar
Sayna Ebrahimi
Trevor Darrell
Ludwig Schmidt
UQCV
OOD
68
123
0
07 Jul 2021
Mandoline: Model Evaluation under Distribution Shift
Mayee F. Chen
Karan Goel
N. Sohoni
Fait Poms
Kayvon Fatahalian
Christopher Ré
70
72
0
01 Jul 2021
Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles
Jiefeng Chen
Frederick Liu
Besim Avci
Xi Wu
Yingyu Liang
S. Jha
85
64
0
29 Jun 2021
Assessing Generalization of SGD via Disagreement
Yiding Jiang
Vaishnavh Nagarajan
Christina Baek
J. Zico Kolter
95
115
0
25 Jun 2021
QuaPy: A Python-Based Framework for Quantification
Alejandro Moreo
Andrea Esuli
Fabrizio Sebastiani
35
21
0
18 Jun 2021
A Comparative Evaluation of Quantification Methods
Tobias Schumacher
M. Strohmaier
Florian Lemmerich
MQ
59
14
0
04 Mar 2021
Tweet Sentiment Quantification: An Experimental Re-Evaluation
Alejandro Moreo
Fabrizio Sebastiani
26
17
0
04 Nov 2020
A Unified View of Label Shift Estimation
Saurabh Garg
Yifan Wu
Sivaraman Balakrishnan
Zachary Chase Lipton
72
146
0
17 Mar 2020
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter
Victor Sanh
Lysandre Debut
Julien Chaumond
Thomas Wolf
255
7,547
0
02 Oct 2019
RoBERTa: A Robustly Optimized BERT Pretraining Approach
Yinhan Liu
Myle Ott
Naman Goyal
Jingfei Du
Mandar Joshi
Danqi Chen
Omer Levy
M. Lewis
Luke Zettlemoyer
Veselin Stoyanov
AIMat
677
24,541
0
26 Jul 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
185
1,702
0
06 Jun 2019
Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift
Stephan Rabanser
Stephan Günnemann
Zachary Chase Lipton
61
370
0
29 Oct 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
1.8K
95,175
0
11 Oct 2018
Evaluation Measures for Quantification: An Axiomatic Approach
Fabrizio Sebastiani
52
35
0
06 Sep 2018
Detecting and Correcting for Label Shift with Black Box Predictors
Zachary Chase Lipton
Yu Wang
Alex Smola
OOD
73
558
0
12 Feb 2018
Should we really use post-hoc tests based on mean-ranks?
A. Benavoli
Giorgio Corani
Francesca Mangili
52
380
0
09 May 2015
1