ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.09358
  4. Cited By

Marigold: Affordable Adaptation of Diffusion-Based Image Generators for Image Analysis

14 May 2025
Bingxin Ke
Kevin Qu
Tianfu Wang
Nando Metzger
Shengyu Huang
Bo Li
Anton Obukhov
Konrad Schindler
    DiffMVLM
ArXiv (abs)PDFHTML

Papers citing "Marigold: Affordable Adaptation of Diffusion-Based Image Generators for Image Analysis"

15 / 65 papers shown
Title
FrameNet: Learning Local Canonical Frames of 3D Surfaces from a Single
  RGB Image
FrameNet: Learning Local Canonical Frames of 3D Surfaces from a Single RGB Image
Jingwei Huang
Yichao Zhou
Thomas Funkhouser
Leonidas Guibas
3DV
80
48
0
29 Mar 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
619
10,595
0
12 Dec 2018
Deep Ordinal Regression Network for Monocular Depth Estimation
Deep Ordinal Regression Network for Monocular Depth Estimation
Huan Fu
Biwei Huang
Chaohui Wang
Kayhan Batmanghelich
Dacheng Tao
MDE
484
1,733
0
06 Jun 2018
Evaluation of CNN-based Single-Image Depth Estimation Methods
Evaluation of CNN-based Single-Image Depth Estimation Methods
Tobias Koch
Lukas Liebel
Friedrich Fraundorfer
Marco Körner
3DV
143
150
0
03 May 2018
MegaDepth: Learning Single-View Depth Prediction from Internet Photos
MegaDepth: Learning Single-View Depth Prediction from Internet Photos
Zhengqi Li
Noah Snavely
MDE3DV
115
1,024
0
02 Apr 2018
Revisiting Single Image Depth Estimation: Toward Higher Resolution Maps
  with Accurate Object Boundaries
Revisiting Single Image Depth Estimation: Toward Higher Resolution Maps with Accurate Object Boundaries
Junjie Hu
Mete Ozay
Yan Zhang
Takayuki Okatani
3DV
91
377
0
23 Mar 2018
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
Richard Y. Zhang
Phillip Isola
Alexei A. Efros
Eli Shechtman
Oliver Wang
EGVM
384
11,920
0
11 Jan 2018
ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes
ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes
Angela Dai
Angel X. Chang
Manolis Savva
Maciej Halber
Thomas Funkhouser
Matthias Nießner
3DPC3DV
500
4,084
0
14 Feb 2017
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOSSSeg
747
37,895
0
20 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,510
0
10 Dec 2015
Designing Deep Networks for Surface Normal Estimation
Designing Deep Networks for Surface Normal Estimation
Xinyu Wang
David Fouhey
Abhinav Gupta
3DVSSL
280
356
0
18 Nov 2014
Predicting Depth, Surface Normals and Semantic Labels with a Common
  Multi-Scale Convolutional Architecture
Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture
David Eigen
Rob Fergus
VLMMDE
209
2,683
0
18 Nov 2014
How transferable are features in deep neural networks?
How transferable are features in deep neural networks?
J. Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
OOD
236
8,353
0
06 Nov 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,529
0
04 Sep 2014
Depth Map Prediction from a Single Image using a Multi-Scale Deep
  Network
Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
David Eigen
Christian Puhrsch
Rob Fergus
MDE3DPC3DV
241
4,066
0
09 Jun 2014
Previous
12