ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.04788
  4. Cited By
Convex Relaxation for Robust Vanishing Point Estimation in Manhattan World
v1v2v3 (latest)

Convex Relaxation for Robust Vanishing Point Estimation in Manhattan World

7 May 2025
Bangyan Liao
Zhenjun Zhao
Haoang Li
Yi Zhou
Yingping Zeng
Hao Li
Peidong Liu
ArXiv (abs)PDFHTML

Papers citing "Convex Relaxation for Robust Vanishing Point Estimation in Manhattan World"

10 / 10 papers shown
Title
PARSAC: Accelerating Robust Multi-Model Fitting with Parallel Sample
  Consensus
PARSAC: Accelerating Robust Multi-Model Fitting with Parallel Sample Consensus
Florian Kluger
Bodo Rosenhahn
43
6
0
26 Jan 2024
Deep vanishing point detection: Geometric priors make dataset variations
  vanish
Deep vanishing point detection: Geometric priors make dataset variations vanish
Yancong Lin
R. Wiersma
S. Pintea
Klaus Hildebrandt
E. Eisemann
Jan van Gemert
AAML3DPC
88
24
0
16 Mar 2022
CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus
CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus
Florian Kluger
Eric Brachmann
H. Ackermann
Carsten Rother
M. Yang
Bodo Rosenhahn
111
60
0
08 Jan 2020
MAGSAC++, a fast, reliable and accurate robust estimator
MAGSAC++, a fast, reliable and accurate robust estimator
Dániel Baráth
Jana Noskova
Maksym Ivashechkin
Jirí Matas
71
250
0
11 Dec 2019
NeurVPS: Neural Vanishing Point Scanning via Conic Convolution
NeurVPS: Neural Vanishing Point Scanning via Conic Convolution
Yichao Zhou
Haozhi Qi
Jingwei Huang
Yi-An Ma
3DPC
82
44
0
14 Oct 2019
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image
Yichao Zhou
Haozhi Qi
Yuexiang Zhai
Qi Sun
Zhili Chen
Li-Yi Wei
Yi-An Ma
3DV
62
65
0
17 May 2019
SDRSAC: Semidefinite-Based Randomized Approach for Robust Point Cloud
  Registration without Correspondences
SDRSAC: Semidefinite-Based Randomized Approach for Robust Point Cloud Registration without Correspondences
Huu Le
Thanh-Toan Do
Tuan Hoang
Ngai-Man Cheung
3DV3DPC
79
89
0
06 Apr 2019
An Efficient Solution to Non-Minimal Case Essential Matrix Estimation
An Efficient Solution to Non-Minimal Case Essential Matrix Estimation
Ji Zhao
77
51
0
21 Mar 2019
MAGSAC: marginalizing sample consensus
MAGSAC: marginalizing sample consensus
Dániel Baráth
Jana Noskova
Jirí Matas
58
278
0
20 Mar 2018
Detecting Vanishing Points using Global Image Context in a Non-Manhattan
  World
Detecting Vanishing Points using Global Image Context in a Non-Manhattan World
Menghua Zhai
Scott Workman
Nathan Jacobs
89
105
0
19 Aug 2016
1