ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.14854
  4. Cited By
Uncertainty quantification of neural network models of evolving processes via Langevin sampling
v1v2 (latest)

Uncertainty quantification of neural network models of evolving processes via Langevin sampling

21 April 2025
Cosmin Safta
Reese E. Jones
Ravi G. Patel
Raelynn Wonnacot
Dan S. Bolintineanu
Craig M. Hamel
S. Kramer
    BDL
ArXiv (abs)PDFHTML

Papers citing "Uncertainty quantification of neural network models of evolving processes via Langevin sampling"

28 / 28 papers shown
Title
Condensed Stein Variational Gradient Descent for Uncertainty
  Quantification of Neural Networks
Condensed Stein Variational Gradient Descent for Uncertainty Quantification of Neural Networks
G. A. Padmanabha
Cosmin Safta
N. Bouklas
Reese E. Jones
82
2
0
21 Dec 2024
Improving the performance of Stein variational inference through extreme
  sparsification of physically-constrained neural network models
Improving the performance of Stein variational inference through extreme sparsification of physically-constrained neural network models
G. A. Padmanabha
J. Fuhg
Cosmin Safta
Reese E. Jones
N. Bouklas
68
5
0
30 Jun 2024
Uncertainty Quantification of Graph Convolution Neural Network Models of
  Evolving Processes
Uncertainty Quantification of Graph Convolution Neural Network Models of Evolving Processes
J. Hauth
Cosmin Safta
Xun Huan
Ravi G. Patel
Reese E. Jones
BDLUQCV
57
2
0
17 Feb 2024
Score-based Diffusion Models via Stochastic Differential Equations -- a
  Technical Tutorial
Score-based Diffusion Models via Stochastic Differential Equations -- a Technical Tutorial
Wenpin Tang
Hanyang Zhao
DiffM
84
27
0
12 Feb 2024
FreeU: Free Lunch in Diffusion U-Net
FreeU: Free Lunch in Diffusion U-Net
Chenyang Si
Ziqi Huang
Yuming Jiang
Ziwei Liu
DiffM
80
145
0
20 Sep 2023
A Brief Review of Hypernetworks in Deep Learning
A Brief Review of Hypernetworks in Deep Learning
Vinod Kumar Chauhan
Jiandong Zhou
Ping Lu
Soheila Molaei
David Clifton
96
106
0
12 Jun 2023
Score Operator Newton transport
Score Operator Newton transport
N. Chandramoorthy
F. Schaefer
Youssef Marzouk
OT
52
1
0
16 May 2023
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
M. S. Albergo
Nicholas M. Boffi
Eric Vanden-Eijnden
DiffM
299
323
0
15 Mar 2023
Hypernetworks in Meta-Reinforcement Learning
Hypernetworks in Meta-Reinforcement Learning
Jacob Beck
Matthew Jackson
Risto Vuorio
Shimon Whiteson
OffRL
76
30
0
20 Oct 2022
Flow Matching for Generative Modeling
Flow Matching for Generative Modeling
Y. Lipman
Ricky T. Q. Chen
Heli Ben-Hamu
Maximilian Nickel
Matt Le
OOD
207
1,365
0
06 Oct 2022
Equinox: neural networks in JAX via callable PyTrees and filtered
  transformations
Equinox: neural networks in JAX via callable PyTrees and filtered transformations
Patrick Kidger
Cristian Garcia
56
126
0
30 Oct 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential
  Equations
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
David Duvenaud
BDLUQCV
68
49
0
12 Feb 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
160
670
0
22 Jan 2021
Bayesian Neural Ordinary Differential Equations
Bayesian Neural Ordinary Differential Equations
Raj Dandekar
Karen Chung
Vaibhav Dixit
Mohamed Tarek
Aslan Garcia-Valadez
Krishna Vishal Vemula
Chris Rackauckas
UQCVOODBDL
43
53
0
14 Dec 2020
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
350
6,551
0
26 Nov 2020
Neural Stochastic Differential Equations: Deep Latent Gaussian Models in
  the Diffusion Limit
Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit
Belinda Tzen
Maxim Raginsky
DiffM
164
210
0
23 May 2019
Augmented Neural ODEs
Augmented Neural ODEs
Emilien Dupont
Arnaud Doucet
Yee Whye Teh
BDL
150
631
0
02 Apr 2019
Graph HyperNetworks for Neural Architecture Search
Graph HyperNetworks for Neural Architecture Search
Chris Zhang
Mengye Ren
R. Urtasun
GNN
68
280
0
12 Oct 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
417
5,156
0
19 Jun 2018
Stochastic Hyperparameter Optimization through Hypernetworks
Stochastic Hyperparameter Optimization through Hypernetworks
Jonathan Lorraine
David Duvenaud
74
140
0
26 Feb 2018
Bayesian Hypernetworks
Bayesian Hypernetworks
David M. Krueger
Chin-Wei Huang
Riashat Islam
Ryan Turner
Alexandre Lacoste
Aaron Courville
UQCVBDL
70
139
0
13 Oct 2017
HyperNetworks
HyperNetworks
David R Ha
Andrew M. Dai
Quoc V. Le
164
1,632
0
27 Sep 2016
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
280
623
0
22 Sep 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
73
1,093
0
16 Aug 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
287
4,807
0
04 Jan 2016
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg3DV
1.9K
77,341
0
18 May 2015
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRLBDL
144
1,168
0
31 Dec 2013
Measuring and testing dependence by correlation of distances
Measuring and testing dependence by correlation of distances
G. Székely
Maria L. Rizzo
N. K. Bakirov
279
2,602
0
28 Mar 2008
1