Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2504.13101
Cited By
Position: An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
17 April 2025
Patrik Reizinger
Randall Balestriero
David Klindt
Wieland Brendel
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Position: An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research"
50 / 89 papers shown
Title
Interaction Asymmetry: A General Principle for Learning Composable Abstractions
Jack Brady
Julius von Kügelgen
Sébastien Lachapelle
Simon Buchholz
Thomas Kipf
Wieland Brendel
DRL
CoGe
61
3
0
12 Nov 2024
Objective drives the consistency of representational similarity across datasets
Laure Ciernik
Lorenz Linhardt
Marco Morik
Jonas Dippel
Simon Kornblith
Lukas Muttenthaler
48
5
0
08 Nov 2024
All or None: Identifiable Linear Properties of Next-token Predictors in Language Modeling
Emanuele Marconato
Sébastien Lachapelle
Sebastian Weichwald
Luigi Gresele
88
4
0
30 Oct 2024
Cross-Entropy Is All You Need To Invert the Data Generating Process
Patrik Reizinger
Alice Bizeul
Attila Juhos
Julia E. Vogt
Randall Balestriero
Wieland Brendel
David Klindt
SSL
OOD
BDL
DRL
166
6
0
29 Oct 2024
In Search of Forgotten Domain Generalization
Prasanna Mayilvahanan
Roland S. Zimmermann
Thaddäus Wiedemer
E. Rusak
Attila Juhos
Matthias Bethge
Wieland Brendel
CLL
VLM
OOD
55
4
0
10 Oct 2024
Compositional Risk Minimization
Divyat Mahajan
Mohammad Pezeshki
Ioannis Mitliagkas
Kartik Ahuja
Pascal Vincent
Pascal Vincent
71
4
0
08 Oct 2024
Smaller, Weaker, Yet Better: Training LLM Reasoners via Compute-Optimal Sampling
Hritik Bansal
Arian Hosseini
Rishabh Agarwal
Vinh Q. Tran
Mehran Kazemi
SyDa
OffRL
LRM
63
47
0
29 Aug 2024
InfoNCE: Identifying the Gap Between Theory and Practice
E. Rusak
Patrik Reizinger
Attila Juhos
Oliver Bringmann
Roland S. Zimmermann
Wieland Brendel
87
10
0
28 Jun 2024
Latent Space Translation via Inverse Relative Projection
Valentino Maiorca
Luca Moschella
Marco Fumero
Francesco Locatello
Emanuele Rodolà
63
2
0
21 Jun 2024
Identifiable Causal Representation Learning: Unsupervised, Multi-View, and Multi-Environment
Julius von Kügelgen
49
4
0
19 Jun 2024
Occam's Razor for Self Supervised Learning: What is Sufficient to Learn Good Representations?
Mark Ibrahim
David Klindt
Randall Balestriero
SSL
76
5
1
15 Jun 2024
Get rich quick: exact solutions reveal how unbalanced initializations promote rapid feature learning
D. Kunin
Allan Raventós
Clémentine Dominé
Feng Chen
David Klindt
Andrew M. Saxe
Surya Ganguli
MLT
87
18
0
10 Jun 2024
Marrying Causal Representation Learning with Dynamical Systems for Science
Dingling Yao
Caroline Muller
Francesco Locatello
CML
AI4CE
109
9
0
22 May 2024
Position: Understanding LLMs Requires More Than Statistical Generalization
Patrik Reizinger
Szilvia Ujváry
Anna Mészáros
A. Kerekes
Wieland Brendel
Ferenc Huszár
82
14
0
03 May 2024
Investigating the Benefits of Projection Head for Representation Learning
Yihao Xue
Eric Gan
Jiayi Ni
Siddharth Joshi
Baharan Mirzasoleiman
68
12
0
18 Mar 2024
Augmentations vs Algorithms: What Works in Self-Supervised Learning
Warren Morningstar
Alex Bijamov
Chris Duvarney
Luke Friedman
Neha Kalibhat
...
Philip Mansfield
Renan A. Rojas-Gomez
Karan Singhal
Bradley Green
Sushant Prakash
SSL
50
11
0
08 Mar 2024
On Provable Length and Compositional Generalization
Kartik Ahuja
Amin Mansouri
OODD
53
7
0
07 Feb 2024
An Interventional Perspective on Identifiability in Gaussian LTI Systems with Independent Component Analysis
Goutham Rajendran
Patrik Reizinger
Wieland Brendel
Pradeep Ravikumar
CML
108
8
0
29 Nov 2023
Self-Supervised Disentanglement by Leveraging Structure in Data Augmentations
Cian Eastwood
Julius von Kügelgen
Linus Ericsson
Diane Bouchacourt
Pascal Vincent
Bernhard Schölkopf
Mark Ibrahim
86
11
0
15 Nov 2023
The Linear Representation Hypothesis and the Geometry of Large Language Models
Kiho Park
Yo Joong Choe
Victor Veitch
LLMSV
MILM
95
177
0
07 Nov 2023
Causal Representation Learning Made Identifiable by Grouping of Observational Variables
H. Morioka
Aapo Hyvarinen
OOD
CML
BDL
90
10
0
24 Oct 2023
Does CLIP's Generalization Performance Mainly Stem from High Train-Test Similarity?
Prasanna Mayilvahanan
Thaddäus Wiedemer
E. Rusak
Matthias Bethge
Wieland Brendel
OODD
71
23
0
14 Oct 2023
Provable Compositional Generalization for Object-Centric Learning
Thaddäus Wiedemer
Jack Brady
Alexander Panfilov
Attila Juhos
Matthias Bethge
Wieland Brendel
OCL
69
20
0
09 Oct 2023
Generalization in diffusion models arises from geometry-adaptive harmonic representations
Zahra Kadkhodaie
Florentin Guth
Eero P. Simoncelli
Stéphane Mallat
AI4CE
DiffM
96
81
0
04 Oct 2023
From Bricks to Bridges: Product of Invariances to Enhance Latent Space Communication
Irene Cannistraci
Luca Moschella
Marco Fumero
Valentino Maiorca
Emanuele Rodolà
67
14
0
02 Oct 2023
Towards the Sparseness of Projection Head in Self-Supervised Learning
Changwen Zheng
Xingzhe Su
Wenwen Qiang
Jingyao Wang
Changwen Zheng
Gang Hua
80
3
0
18 Jul 2023
Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation
Sébastien Lachapelle
Divyat Mahajan
Ioannis Mitliagkas
Simon Lacoste-Julien
58
28
0
05 Jul 2023
Pretraining task diversity and the emergence of non-Bayesian in-context learning for regression
Allan Raventós
Mansheej Paul
F. Chen
Surya Ganguli
84
86
0
26 Jun 2023
BISCUIT: Causal Representation Learning from Binary Interactions
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
55
31
0
16 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
99
63
0
01 Jun 2023
Causal Component Analysis
Wendong Liang
Armin Kekić
Julius von Kügelgen
Simon Buchholz
M. Besserve
Luigi Gresele
Bernhard Schölkopf
CML
84
38
0
26 May 2023
Randomized Positional Encodings Boost Length Generalization of Transformers
Anian Ruoss
Grégoire Delétang
Tim Genewein
Jordi Grau-Moya
Róbert Csordás
Mehdi Abbana Bennani
Shane Legg
J. Veness
LLMAG
57
103
0
26 May 2023
On the Stepwise Nature of Self-Supervised Learning
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
55
34
0
27 Mar 2023
Sigmoid Loss for Language Image Pre-Training
Xiaohua Zhai
Basil Mustafa
Alexander Kolesnikov
Lucas Beyer
CLIP
VLM
128
1,131
0
27 Mar 2023
Identifiability Results for Multimodal Contrastive Learning
Imant Daunhawer
Alice Bizeul
Emanuele Palumbo
Alexander Marx
Julia E. Vogt
52
42
0
16 Mar 2023
The SSL Interplay: Augmentations, Inductive Bias, and Generalization
Vivien A. Cabannes
B. Kiani
Randall Balestriero
Yann LeCun
A. Bietti
SSL
63
32
0
06 Feb 2023
Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language Models
Hong Liu
Sang Michael Xie
Zhiyuan Li
Tengyu Ma
AI4CE
100
52
0
25 Oct 2022
Self-Supervised Learning via Maximum Entropy Coding
Xin Liu
Zhongdao Wang
Yali Li
Shengjin Wang
SSL
85
43
0
20 Oct 2022
Unsupervised visualization of image datasets using contrastive learning
Jan Boehm
Philipp Berens
D. Kobak
SSL
62
15
0
18 Oct 2022
RankMe: Assessing the downstream performance of pretrained self-supervised representations by their rank
Q. Garrido
Randall Balestriero
Laurent Najman
Yann LeCun
SSL
90
76
0
05 Oct 2022
ASIF: Coupled Data Turns Unimodal Models to Multimodal Without Training
Antonio Norelli
Marco Fumero
Valentino Maiorca
Luca Moschella
Emanuele Rodolà
Francesco Locatello
VLM
105
36
0
04 Oct 2022
Relative representations enable zero-shot latent space communication
Luca Moschella
Valentino Maiorca
Marco Fumero
Antonio Norelli
Francesco Locatello
Emanuele Rodolà
66
105
0
30 Sep 2022
Variance Covariance Regularization Enforces Pairwise Independence in Self-Supervised Representations
Grégoire Mialon
Randall Balestriero
Yann LeCun
57
9
0
29 Sep 2022
Function Classes for Identifiable Nonlinear Independent Component Analysis
Simon Buchholz
M. Besserve
Bernhard Schölkopf
61
40
0
12 Aug 2022
What Do We Maximize in Self-Supervised Learning?
Ravid Shwartz-Ziv
Randall Balestriero
Yann LeCun
SSL
44
17
0
20 Jul 2022
Beyond neural scaling laws: beating power law scaling via data pruning
Ben Sorscher
Robert Geirhos
Shashank Shekhar
Surya Ganguli
Ari S. Morcos
85
439
0
29 Jun 2022
Guillotine Regularization: Why removing layers is needed to improve generalization in Self-Supervised Learning
Florian Bordes
Randall Balestriero
Q. Garrido
Adrien Bardes
Pascal Vincent
80
22
0
27 Jun 2022
Self-supervised Learning in Remote Sensing: A Review
Yi Wang
C. Albrecht
Nassim Ait Ali Braham
Lichao Mou
Xiao Xiang Zhu
71
223
0
27 Jun 2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
59
20
0
06 Jun 2022
On the duality between contrastive and non-contrastive self-supervised learning
Q. Garrido
Yubei Chen
Adrien Bardes
Laurent Najman
Yann LeCun
SSL
51
90
0
03 Jun 2022
1
2
Next