ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.12588
  4. Cited By
Plain Transformers Can be Powerful Graph Learners
v1v2 (latest)

Plain Transformers Can be Powerful Graph Learners

17 April 2025
Liheng Ma
Soumyasundar Pal
Yingxue Zhang
Philip Torr
Mark Coates
ArXiv (abs)PDFHTML

Papers citing "Plain Transformers Can be Powerful Graph Learners"

37 / 37 papers shown
Title
On the Expressive Power of Spectral Invariant Graph Neural Networks
On the Expressive Power of Spectral Invariant Graph Neural Networks
Bohang Zhang
Lingxiao Zhao
Haggai Maron
87
12
0
06 Jun 2024
Extending the Design Space of Graph Neural Networks by Rethinking
  Folklore Weisfeiler-Lehman
Extending the Design Space of Graph Neural Networks by Rethinking Folklore Weisfeiler-Lehman
Jiarui Feng
Lecheng Kong
Hao Liu
Dacheng Tao
Fuhai Li
Muhan Zhang
Yixin Chen
114
11
0
05 Jun 2023
An Empirical Study of Realized GNN Expressiveness
An Empirical Study of Realized GNN Expressiveness
Yanbo Wang
Muhan Zhang
87
14
0
16 Apr 2023
A Generalization of ViT/MLP-Mixer to Graphs
A Generalization of ViT/MLP-Mixer to Graphs
Xiaoxin He
Bryan Hooi
T. Laurent
Adam Perold
Yann LeCun
Xavier Bresson
94
98
0
27 Dec 2022
Scalable Diffusion Models with Transformers
Scalable Diffusion Models with Transformers
William S. Peebles
Saining Xie
GNN
122
2,436
0
19 Dec 2022
Boosting the Cycle Counting Power of Graph Neural Networks with
  I$^2$-GNNs
Boosting the Cycle Counting Power of Graph Neural Networks with I2^22-GNNs
Yinan Huang
Xingang Peng
Jianzhu Ma
Muhan Zhang
130
49
0
22 Oct 2022
Your Transformer May Not be as Powerful as You Expect
Your Transformer May Not be as Powerful as You Expect
Shengjie Luo
Shanda Li
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
Di He
123
54
0
26 May 2022
Recipe for a General, Powerful, Scalable Graph Transformer
Recipe for a General, Powerful, Scalable Graph Transformer
Ladislav Rampášek
Mikhail Galkin
Vijay Prakash Dwivedi
Anh Tuan Luu
Guy Wolf
Dominique Beaini
136
579
0
25 May 2022
A Theoretical Comparison of Graph Neural Network Extensions
A Theoretical Comparison of Graph Neural Network Extensions
Pál András Papp
Roger Wattenhofer
130
48
0
30 Jan 2022
A ConvNet for the 2020s
A ConvNet for the 2020s
Zhuang Liu
Hanzi Mao
Chaozheng Wu
Christoph Feichtenhofer
Trevor Darrell
Saining Xie
ViT
189
5,226
0
10 Jan 2022
Understanding over-squashing and bottlenecks on graphs via curvature
Understanding over-squashing and bottlenecks on graphs via curvature
Jake Topping
Francesco Di Giovanni
B. Chamberlain
Xiaowen Dong
M. Bronstein
110
451
0
29 Nov 2021
Swin Transformer V2: Scaling Up Capacity and Resolution
Swin Transformer V2: Scaling Up Capacity and Resolution
Ze Liu
Han Hu
Yutong Lin
Zhuliang Yao
Zhenda Xie
...
Yue Cao
Zheng Zhang
Li Dong
Furu Wei
B. Guo
ViT
221
1,831
0
18 Nov 2021
Nested Graph Neural Networks
Nested Graph Neural Networks
Muhan Zhang
Pan Li
86
169
0
25 Oct 2021
Equivariant Subgraph Aggregation Networks
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
124
180
0
06 Oct 2021
Train Short, Test Long: Attention with Linear Biases Enables Input
  Length Extrapolation
Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation
Ofir Press
Noah A. Smith
M. Lewis
339
778
0
27 Aug 2021
Global Self-Attention as a Replacement for Graph Convolution
Global Self-Attention as a Replacement for Graph Convolution
Md Shamim Hussain
Mohammed J Zaki
D. Subramanian
ViT
76
127
0
07 Aug 2021
Rethinking Graph Transformers with Spectral Attention
Rethinking Graph Transformers with Spectral Attention
Devin Kreuzer
Dominique Beaini
William L. Hamilton
Vincent Létourneau
Prudencio Tossou
109
548
0
07 Jun 2021
RoFormer: Enhanced Transformer with Rotary Position Embedding
RoFormer: Enhanced Transformer with Rotary Position Embedding
Jianlin Su
Yu Lu
Shengfeng Pan
Ahmed Murtadha
Bo Wen
Yunfeng Liu
329
2,533
0
20 Apr 2021
Going deeper with Image Transformers
Going deeper with Image Transformers
Hugo Touvron
Matthieu Cord
Alexandre Sablayrolles
Gabriel Synnaeve
Hervé Jégou
ViT
168
1,022
0
31 Mar 2021
Directional Graph Networks
Directional Graph Networks
Dominique Beaini
Saro Passaro
Vincent Létourneau
William L. Hamilton
Gabriele Corso
Pietro Lio
103
193
0
06 Oct 2020
Implicit Neural Representations with Periodic Activation Functions
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann
Julien N. P. Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein
AI4TS
174
2,579
0
17 Jun 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism
  Counting
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
Stefanos Zafeiriou
M. Bronstein
136
438
0
16 Jun 2020
On the Bottleneck of Graph Neural Networks and its Practical
  Implications
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon
Eran Yahav
GNN
108
695
0
09 Jun 2020
The Lipschitz Constant of Self-Attention
The Lipschitz Constant of Self-Attention
Hyunjik Kim
George Papamakarios
A. Mnih
88
146
0
08 Jun 2020
Principal Neighbourhood Aggregation for Graph Nets
Principal Neighbourhood Aggregation for Graph Nets
Gabriele Corso
Luca Cavalleri
Dominique Beaini
Pietro Lio
Petar Velickovic
GNN
140
677
0
12 Apr 2020
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
548
953
0
02 Mar 2020
On Layer Normalization in the Transformer Architecture
On Layer Normalization in the Transformer Architecture
Ruibin Xiong
Yunchang Yang
Di He
Kai Zheng
Shuxin Zheng
Chen Xing
Huishuai Zhang
Yanyan Lan
Liwei Wang
Tie-Yan Liu
AI4CE
153
998
0
12 Feb 2020
Provably Powerful Graph Networks
Provably Powerful Graph Networks
Haggai Maron
Heli Ben-Hamu
Hadar Serviansky
Y. Lipman
137
582
0
27 May 2019
On the Spectral Bias of Neural Networks
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
167
1,456
0
22 Jun 2018
Graph networks as learnable physics engines for inference and control
Graph networks as learnable physics engines for inference and control
Alvaro Sanchez-Gonzalez
N. Heess
Jost Tobias Springenberg
J. Merel
Martin Riedmiller
R. Hadsell
Peter W. Battaglia
GNNAI4CEPINNOCL
228
603
0
04 Jun 2018
Deeper Insights into Graph Convolutional Networks for Semi-Supervised
  Learning
Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning
Qimai Li
Zhichao Han
Xiao-Ming Wu
GNNSSL
199
2,839
0
22 Jan 2018
FiLM: Visual Reasoning with a General Conditioning Layer
FiLM: Visual Reasoning with a General Conditioning Layer
Ethan Perez
Florian Strub
H. D. Vries
Vincent Dumoulin
Aaron Courville
FAttAIMatOffRLAI4CE
372
2,239
0
22 Sep 2017
Modulating early visual processing by language
Modulating early visual processing by language
H. D. Vries
Florian Strub
Jérémie Mary
Hugo Larochelle
Olivier Pietquin
Aaron Courville
152
489
0
02 Jul 2017
A Learned Representation For Artistic Style
A Learned Representation For Artistic Style
Vincent Dumoulin
Jonathon Shlens
M. Kudlur
GAN
313
1,166
0
24 Oct 2016
SGDR: Stochastic Gradient Descent with Warm Restarts
SGDR: Stochastic Gradient Descent with Warm Restarts
I. Loshchilov
Frank Hutter
ODL
350
8,190
0
13 Aug 2016
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
435
10,548
0
21 Jul 2016
Deep Networks with Stochastic Depth
Deep Networks with Stochastic Depth
Gao Huang
Yu Sun
Zhuang Liu
Daniel Sedra
Kilian Q. Weinberger
217
2,365
0
30 Mar 2016
1