ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.08916
  4. Cited By
Improving the evaluation of samplers on multi-modal targets

Improving the evaluation of samplers on multi-modal targets

11 April 2025
Louis Grenioux
Maxence Noble
Marylou Gabrié
ArXiv (abs)PDFHTML

Papers citing "Improving the evaluation of samplers on multi-modal targets"

30 / 30 papers shown
Title
Sequential Controlled Langevin Diffusions
Sequential Controlled Langevin Diffusions
Junhua Chen
Lorenz Richter
Julius Berner
Denis Blessing
Gerhard Neumann
A. Anandkumar
115
22
0
10 Dec 2024
Learned Reference-based Diffusion Sampling for multi-modal distributions
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
112
6
0
25 Oct 2024
A theoretical perspective on mode collapse in variational inference
A theoretical perspective on mode collapse in variational inference
Roman Soletskyi
Marylou Gabrié
Bruno Loureiro
DRL
55
5
0
17 Oct 2024
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for
  Sampling
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
127
27
0
11 Jun 2024
Zeroth-Order Sampling Methods for Non-Log-Concave Distributions:
  Alleviating Metastability by Denoising Diffusion
Zeroth-Order Sampling Methods for Non-Log-Concave Distributions: Alleviating Metastability by Denoising Diffusion
Ye He
Kevin Rojas
Molei Tao
DiffM
114
11
0
27 Feb 2024
Stochastic Localization via Iterative Posterior Sampling
Stochastic Localization via Iterative Posterior Sampling
Louis Grenioux
Maxence Noble
Marylou Gabrié
Alain Durmus
DiffM
88
16
0
16 Feb 2024
Faster Sampling without Isoperimetry via Diffusion-based Monte Carlo
Faster Sampling without Isoperimetry via Diffusion-based Monte Carlo
Xunpeng Huang
Difan Zou
Hanze Dong
Yian Ma
Tong Zhang
DiffM
58
12
0
12 Jan 2024
Reverse Diffusion Monte Carlo
Reverse Diffusion Monte Carlo
Xunpeng Huang
Hanze Dong
Yi Hao
Yi-An Ma
Tong Zhang
DiffM
83
28
0
05 Jul 2023
Improved sampling via learned diffusions
Improved sampling via learned diffusions
Lorenz Richter
Julius Berner
DiffM
105
65
0
03 Jul 2023
Sampling, Diffusions, and Stochastic Localization
Sampling, Diffusions, and Stochastic Localization
Andrea Montanari
DiffM
50
34
0
18 May 2023
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
M. S. Albergo
Nicholas M. Boffi
Eric Vanden-Eijnden
DiffM
315
326
0
15 Mar 2023
Denoising Diffusion Samplers
Denoising Diffusion Samplers
Francisco Vargas
Will Grathwohl
Arnaud Doucet
DiffM
65
90
0
27 Feb 2023
On Sampling with Approximate Transport Maps
On Sampling with Approximate Transport Maps
Louis Grenioux
Alain Durmus
Eric Moulines
Marylou Gabrié
OT
56
17
0
09 Feb 2023
normflows: A PyTorch Package for Normalizing Flows
normflows: A PyTorch Package for Normalizing Flows
Vincent Stimper
David Liu
Andrew Campbell
V. Berenz
Lukas Ryll
Bernhard Schölkopf
José Miguel Hernández-Lobato
AI4CE
68
63
0
26 Jan 2023
Learning Interpolations between Boltzmann Densities
Learning Interpolations between Boltzmann Densities
Bálint Máté
Franccois Fleuret
137
28
0
18 Jan 2023
An optimal control perspective on diffusion-based generative modeling
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
141
95
0
02 Nov 2022
Path Integral Sampler: a stochastic control approach for sampling
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
102
119
0
30 Nov 2021
Variational Refinement for Importance Sampling Using the Forward
  Kullback-Leibler Divergence
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi-An Ma
Michael I. Jordan
BDL
129
40
0
30 Jun 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
386
6,592
0
26 Nov 2020
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
  Multimodal Posteriors
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
72
63
0
22 Jun 2020
Neural Importance Sampling
Neural Importance Sampling
Thomas Müller
Brian McWilliams
Fabrice Rousselle
Markus Gross
Jan Novák
75
364
0
11 Aug 2018
Coupling and Convergence for Hamiltonian Monte Carlo
Coupling and Convergence for Hamiltonian Monte Carlo
Nawaf Bou-Rabee
A. Eberle
Raphael Zimmer
127
138
0
01 May 2018
Log-concave sampling: Metropolis-Hastings algorithms are fast
Log-concave sampling: Metropolis-Hastings algorithms are fast
Raaz Dwivedi
Yuansi Chen
Martin J. Wainwright
Bin Yu
84
255
0
08 Jan 2018
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
277
3,723
0
26 May 2016
High-dimensional Bayesian inference via the Unadjusted Langevin
  Algorithm
High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
127
357
0
05 May 2016
Importance Sampling: Intrinsic Dimension and Computational Cost
Importance Sampling: Intrinsic Dimension and Computational Cost
S. Agapiou
O. Papaspiliopoulos
D. Sanz-Alonso
Andrew M. Stuart
104
162
0
19 Nov 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
324
4,198
0
21 May 2015
Theoretical guarantees for approximate sampling from smooth and
  log-concave densities
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
107
516
0
23 Dec 2014
Fighting Sample Degeneracy and Impoverishment in Particle Filters: A
  Review of Intelligent Approaches
Fighting Sample Degeneracy and Impoverishment in Particle Filters: A Review of Intelligent Approaches
Tiancheng Li
Shudong Sun
T. Sattar
J. Corchado
110
228
0
12 Aug 2013
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
191
4,315
0
18 Nov 2011
1