ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.08852
  4. Cited By
ML For Hardware Design Interpretability: Challenges and Opportunities

ML For Hardware Design Interpretability: Challenges and Opportunities

11 April 2025
Raymond Baartmans
Andrew Ensinger
Victor Agostinelli
Lizhong Chen
ArXiv (abs)PDFHTML

Papers citing "ML For Hardware Design Interpretability: Challenges and Opportunities"

16 / 16 papers shown
Title
DeepRTL: Bridging Verilog Understanding and Generation with a Unified Representation Model
DeepRTL: Bridging Verilog Understanding and Generation with a Unified Representation Model
Yi Liu
Changran Xu
Yunhao Zhou
Zhiyu Li
Qiang Xu
VLM
122
7
0
20 Feb 2025
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
DeepSeek-AI
Daya Guo
Dejian Yang
Haowei Zhang
Junxiao Song
...
Shiyu Wang
S. Yu
Shunfeng Zhou
Shuting Pan
S.S. Li
ReLMVLMOffRLAI4TSLRM
380
2,000
0
22 Jan 2025
Natural language is not enough: Benchmarking multi-modal generative AI
  for Verilog generation
Natural language is not enough: Benchmarking multi-modal generative AI for Verilog generation
Kaiyan Chang
Zhirong Chen
Yunhao Zhou
Wenlong Zhu
Kun Wang
...
Mengdi Wang
Shengwen Liang
Huawei Li
Yinhe Han
Ying Wang
80
6
0
11 Jul 2024
New Solutions on LLM Acceleration, Optimization, and Application
New Solutions on LLM Acceleration, Optimization, and Application
Yingbing Huang
Lily Jiaxin Wan
Hanchen Ye
Manvi Jha
Jinghua Wang
Yuhong Li
Xiaofan Zhang
Deming Chen
75
12
0
16 Jun 2024
RepoAgent: An LLM-Powered Open-Source Framework for Repository-level
  Code Documentation Generation
RepoAgent: An LLM-Powered Open-Source Framework for Repository-level Code Documentation Generation
Qinyu Luo
Yining Ye
Shihao Liang
Zhong Zhang
Yujia Qin
...
Yankai Lin
Yingli Zhang
Xiaoyin Che
Zhiyuan Liu
Maosong Sun
LLMAG
121
46
0
26 Feb 2024
Gated Linear Attention Transformers with Hardware-Efficient Training
Gated Linear Attention Transformers with Hardware-Efficient Training
Aaron Courville
Bailin Wang
Songlin Yang
Yikang Shen
Yoon Kim
124
180
0
11 Dec 2023
Natural Language based Context Modeling and Reasoning for Ubiquitous
  Computing with Large Language Models: A Tutorial
Natural Language based Context Modeling and Reasoning for Ubiquitous Computing with Large Language Models: A Tutorial
Haoyi Xiong
Jiang Bian
Sijia Yang
Xiaofei Zhang
Linghe Kong
Daqing Zhang
LRMLLMAG
75
5
0
24 Sep 2023
Two-stage LLM Fine-tuning with Less Specialization and More
  Generalization
Two-stage LLM Fine-tuning with Less Specialization and More Generalization
Yihan Wang
Si Si
Daliang Li
Michal Lukasik
Felix X. Yu
Cho-Jui Hsieh
Inderjit S Dhillon
Sanjiv Kumar
137
30
0
01 Nov 2022
CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for
  Code Understanding and Generation
CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation
Yue Wang
Weishi Wang
Shafiq Joty
Guosheng Lin
299
1,592
0
02 Sep 2021
Optimising Design Verification Using Machine Learning: An Open Source
  Solution
Optimising Design Verification Using Machine Learning: An Open Source Solution
B. Varambally
N. Sehgal
29
8
0
04 Dec 2020
GraphCodeBERT: Pre-training Code Representations with Data Flow
GraphCodeBERT: Pre-training Code Representations with Data Flow
Daya Guo
Shuo Ren
Shuai Lu
Zhangyin Feng
Duyu Tang
...
Dawn Drain
Neel Sundaresan
Jian Yin
Daxin Jiang
M. Zhou
167
1,152
0
17 Sep 2020
Survey of Machine Learning Accelerators
Survey of Machine Learning Accelerators
Albert Reuther
Peter Michaleas
Michael Jones
V. Gadepally
S. Samsi
J. Kepner
56
136
0
01 Sep 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
904
42,463
0
28 May 2020
Training with Quantization Noise for Extreme Model Compression
Training with Quantization Noise for Extreme Model Compression
Angela Fan
Pierre Stock
Benjamin Graham
Edouard Grave
Remi Gribonval
Hervé Jégou
Armand Joulin
MQ
106
246
0
15 Apr 2020
Calibration of Pre-trained Transformers
Calibration of Pre-trained Transformers
Shrey Desai
Greg Durrett
UQLM
321
301
0
17 Mar 2020
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
323
1,875
0
03 Feb 2017
1