Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2504.02606
Cited By
Improving Counterfactual Truthfulness for Molecular Property Prediction through Uncertainty Quantification
3 April 2025
Jonas Teufel
Annika Leinweber
Pascal Friederich
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving Counterfactual Truthfulness for Molecular Property Prediction through Uncertainty Quantification"
20 / 20 papers shown
Title
Explainable Artificial Intelligence (XAI) 2.0: A Manifesto of Open Challenges and Interdisciplinary Research Directions
Luca Longo
Mario Brcic
Federico Cabitza
Jaesik Choi
Roberto Confalonieri
...
Andrés Páez
Wojciech Samek
Johannes Schneider
Timo Speith
Simone Stumpf
81
211
0
30 Oct 2023
Input-gradient space particle inference for neural network ensembles
Trung Trinh
Markus Heinonen
Luigi Acerbi
Samuel Kaski
UQCV
60
4
0
05 Jun 2023
Mitigating Molecular Aggregation in Drug Discovery with Predictive Insights from Explainable AI
Hunter Sturm
Jonas Teufel
Kaitlin A. Isfeld
Pascal Friederich
Rebecca Davis
40
2
0
03 Jun 2023
Optimal Training of Mean Variance Estimation Neural Networks
Laurens Sluijterman
Eric Cator
Tom Heskes
DRL
52
26
0
17 Feb 2023
A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
F. Giannotti
CML
91
32
0
21 Oct 2022
Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning
Juntao Tan
Shijie Geng
Zuohui Fu
Yingqiang Ge
Shuyuan Xu
Yunqi Li
Yongfeng Zhang
65
111
0
17 Feb 2022
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
224
1,146
0
07 Jul 2021
δ-CLUE: Diverse Sets of Explanations for Uncertainty Estimates
Dan Ley
Umang Bhatt
Adrian Weller
UQCV
14
7
0
13 Apr 2021
Generating Interpretable Counterfactual Explanations By Implicit Minimisation of Epistemic and Aleatoric Uncertainties
Lisa Schut
Oscar Key
R. McGrath
Luca Costabello
Bogdan Sacaleanu
Medb Corcoran
Y. Gal
CML
93
48
0
16 Mar 2021
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
143
145
0
05 Feb 2021
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
312
1,914
0
12 Nov 2020
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
79
64
0
11 Sep 2020
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCV
BDL
75
116
0
11 Jun 2020
Uncertainty Quantification Using Neural Networks for Molecular Property Prediction
Lior Hirschfeld
Kyle Swanson
Kevin Kaichuang Yang
Regina Barzilay
Connor W. Coley
72
191
0
20 May 2020
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
82
807
0
07 Feb 2019
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
232
7,638
0
01 Oct 2018
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
239
4,259
0
22 Jun 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
326
1,826
0
02 Mar 2017
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
597
28,999
0
09 Sep 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
65
1,092
0
16 Aug 2016
1