Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2504.01842
Cited By
v1
v2 (latest)
shapr: Explaining Machine Learning Models with Conditional Shapley Values in R and Python
2 April 2025
Martin Jullum
Lars Henry Berge Olsen
Jon Lachmann
Annabelle Redelmeier
TDI
FAtt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"shapr: Explaining Machine Learning Models with Conditional Shapley Values in R and Python"
27 / 27 papers shown
Title
midr: Learning from Black-Box Models by Maximum Interpretation Decomposition
Ryoichi Asashiba
Reiji Kozuma
Hirokazu Iwasawa
12
0
0
10 Jun 2025
Fast approximative estimation of conditional Shapley values when using a linear regression model or a polynomial regression model
Fredrik Lohne Aanes
FAtt
185
0
0
25 Apr 2025
shapiq: Shapley Interactions for Machine Learning
Maximilian Muschalik
Hubert Baniecki
Fabian Fumagalli
Patrick Kolpaczki
Barbara Hammer
Eyke Hüllermeier
TDI
66
13
0
02 Oct 2024
Stabilizing Estimates of Shapley Values with Control Variates
Jeremy Goldwasser
Giles Hooker
FAtt
74
5
0
11 Oct 2023
Algorithms to estimate Shapley value feature attributions
Hugh Chen
Ian Covert
Scott M. Lundberg
Su-In Lee
TDI
FAtt
93
236
0
15 Jul 2022
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features
Lars Henry Berge Olsen
I. Glad
Martin Jullum
K. Aas
TDI
FAtt
100
17
0
26 Nov 2021
Sampling Permutations for Shapley Value Estimation
Rory Mitchell
Joshua N. Cooper
E. Frank
G. Holmes
94
121
0
25 Apr 2021
Grouped Feature Importance and Combined Features Effect Plot
Quay Au
J. Herbinger
Clemens Stachl
B. Bischl
Giuseppe Casalicchio
FAtt
98
47
0
23 Apr 2021
Improving KernelSHAP: Practical Shapley Value Estimation via Linear Regression
Ian Covert
Su-In Lee
FAtt
72
173
0
02 Dec 2020
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models
Tom Heskes
E. Sijben
I. G. Bucur
Tom Claassen
FAtt
TDI
118
154
0
03 Nov 2020
Captum: A unified and generic model interpretability library for PyTorch
Narine Kokhlikyan
Vivek Miglani
Miguel Martin
Edward Wang
B. Alsallakh
...
Alexander Melnikov
Natalia Kliushkina
Carlos Araya
Siqi Yan
Orion Reblitz-Richardson
FAtt
195
855
0
16 Sep 2020
A Unifying Framework for Parallel and Distributed Processing in R using Futures
Henrik Bengtsson
AI4TS
67
111
0
02 Aug 2020
Explaining predictive models with mixed features using Shapley values and conditional inference trees
Annabelle Redelmeier
Martin Jullum
K. Aas
FAtt
TDI
82
19
0
02 Jul 2020
True to the Model or True to the Data?
Hugh Chen
Joseph D. Janizek
Scott M. Lundberg
Su-In Lee
TDI
FAtt
172
168
0
29 Jun 2020
Efficient nonparametric statistical inference on population feature importance using Shapley values
B. Williamson
Jean Feng
FAtt
70
72
0
16 Jun 2020
Shapley explainability on the data manifold
Christopher Frye
Damien de Mijolla
T. Begley
Laurence Cowton
Megan Stanley
Ilya Feige
FAtt
TDI
80
102
0
01 Jun 2020
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
748
10,591
0
17 Feb 2020
Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability
Christopher Frye
C. Rowat
Ilya Feige
105
183
0
14 Oct 2019
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
132
2,384
0
06 Jun 2019
Do Not Trust Additive Explanations
Alicja Gosiewska
P. Biecek
73
42
0
27 Mar 2019
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values
K. Aas
Martin Jullum
Anders Løland
FAtt
TDI
90
634
0
25 Mar 2019
Variational Autoencoder with Arbitrary Conditioning
Oleg Ivanov
Michael Figurnov
Dmitry Vetrov
BDL
DRL
85
147
0
06 Jun 2018
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.2K
22,295
0
22 May 2017
Converting High-Dimensional Regression to High-Dimensional Conditional Density Estimation
Rafael Izbicki
Ann B. Lee
195
78
0
26 Apr 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
209
3,893
0
10 Apr 2017
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
Marvin N. Wright
A. Ziegler
306
2,811
0
18 Aug 2015
The Do-Calculus Revisited
Judea Pearl
CML
163
167
0
16 Oct 2012
1