ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.01842
  4. Cited By
shapr: Explaining Machine Learning Models with Conditional Shapley Values in R and Python
v1v2 (latest)

shapr: Explaining Machine Learning Models with Conditional Shapley Values in R and Python

2 April 2025
Martin Jullum
Lars Henry Berge Olsen
Jon Lachmann
Annabelle Redelmeier
    TDIFAtt
ArXiv (abs)PDFHTML

Papers citing "shapr: Explaining Machine Learning Models with Conditional Shapley Values in R and Python"

27 / 27 papers shown
Title
midr: Learning from Black-Box Models by Maximum Interpretation Decomposition
Ryoichi Asashiba
Reiji Kozuma
Hirokazu Iwasawa
12
0
0
10 Jun 2025
Fast approximative estimation of conditional Shapley values when using a linear regression model or a polynomial regression model
Fast approximative estimation of conditional Shapley values when using a linear regression model or a polynomial regression model
Fredrik Lohne Aanes
FAtt
185
0
0
25 Apr 2025
shapiq: Shapley Interactions for Machine Learning
shapiq: Shapley Interactions for Machine Learning
Maximilian Muschalik
Hubert Baniecki
Fabian Fumagalli
Patrick Kolpaczki
Barbara Hammer
Eyke Hüllermeier
TDI
66
13
0
02 Oct 2024
Stabilizing Estimates of Shapley Values with Control Variates
Stabilizing Estimates of Shapley Values with Control Variates
Jeremy Goldwasser
Giles Hooker
FAtt
74
5
0
11 Oct 2023
Algorithms to estimate Shapley value feature attributions
Algorithms to estimate Shapley value feature attributions
Hugh Chen
Ian Covert
Scott M. Lundberg
Su-In Lee
TDIFAtt
93
236
0
15 Jul 2022
Using Shapley Values and Variational Autoencoders to Explain Predictive
  Models with Dependent Mixed Features
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features
Lars Henry Berge Olsen
I. Glad
Martin Jullum
K. Aas
TDIFAtt
100
17
0
26 Nov 2021
Sampling Permutations for Shapley Value Estimation
Sampling Permutations for Shapley Value Estimation
Rory Mitchell
Joshua N. Cooper
E. Frank
G. Holmes
94
121
0
25 Apr 2021
Grouped Feature Importance and Combined Features Effect Plot
Grouped Feature Importance and Combined Features Effect Plot
Quay Au
J. Herbinger
Clemens Stachl
B. Bischl
Giuseppe Casalicchio
FAtt
98
47
0
23 Apr 2021
Improving KernelSHAP: Practical Shapley Value Estimation via Linear
  Regression
Improving KernelSHAP: Practical Shapley Value Estimation via Linear Regression
Ian Covert
Su-In Lee
FAtt
72
173
0
02 Dec 2020
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual
  Predictions of Complex Models
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models
Tom Heskes
E. Sijben
I. G. Bucur
Tom Claassen
FAttTDI
118
154
0
03 Nov 2020
Captum: A unified and generic model interpretability library for PyTorch
Captum: A unified and generic model interpretability library for PyTorch
Narine Kokhlikyan
Vivek Miglani
Miguel Martin
Edward Wang
B. Alsallakh
...
Alexander Melnikov
Natalia Kliushkina
Carlos Araya
Siqi Yan
Orion Reblitz-Richardson
FAtt
195
855
0
16 Sep 2020
A Unifying Framework for Parallel and Distributed Processing in R using
  Futures
A Unifying Framework for Parallel and Distributed Processing in R using Futures
Henrik Bengtsson
AI4TS
67
111
0
02 Aug 2020
Explaining predictive models with mixed features using Shapley values
  and conditional inference trees
Explaining predictive models with mixed features using Shapley values and conditional inference trees
Annabelle Redelmeier
Martin Jullum
K. Aas
FAttTDI
82
19
0
02 Jul 2020
True to the Model or True to the Data?
True to the Model or True to the Data?
Hugh Chen
Joseph D. Janizek
Scott M. Lundberg
Su-In Lee
TDIFAtt
172
168
0
29 Jun 2020
Efficient nonparametric statistical inference on population feature
  importance using Shapley values
Efficient nonparametric statistical inference on population feature importance using Shapley values
B. Williamson
Jean Feng
FAtt
70
72
0
16 Jun 2020
Shapley explainability on the data manifold
Shapley explainability on the data manifold
Christopher Frye
Damien de Mijolla
T. Begley
Laurence Cowton
Megan Stanley
Ilya Feige
FAttTDI
80
102
0
01 Jun 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
748
10,591
0
17 Feb 2020
Asymmetric Shapley values: incorporating causal knowledge into
  model-agnostic explainability
Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability
Christopher Frye
C. Rowat
Ilya Feige
105
183
0
14 Oct 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDLSSLDRL
132
2,384
0
06 Jun 2019
Do Not Trust Additive Explanations
Do Not Trust Additive Explanations
Alicja Gosiewska
P. Biecek
73
42
0
27 Mar 2019
Explaining individual predictions when features are dependent: More
  accurate approximations to Shapley values
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values
K. Aas
Martin Jullum
Anders Løland
FAttTDI
90
634
0
25 Mar 2019
Variational Autoencoder with Arbitrary Conditioning
Variational Autoencoder with Arbitrary Conditioning
Oleg Ivanov
Michael Figurnov
Dmitry Vetrov
BDLDRL
85
147
0
06 Jun 2018
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.2K
22,295
0
22 May 2017
Converting High-Dimensional Regression to High-Dimensional Conditional
  Density Estimation
Converting High-Dimensional Regression to High-Dimensional Conditional Density Estimation
Rafael Izbicki
Ann B. Lee
195
78
0
26 Apr 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
209
3,893
0
10 Apr 2017
ranger: A Fast Implementation of Random Forests for High Dimensional
  Data in C++ and R
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
Marvin N. Wright
A. Ziegler
306
2,811
0
18 Aug 2015
The Do-Calculus Revisited
The Do-Calculus Revisited
Judea Pearl
CML
163
167
0
16 Oct 2012
1