Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2503.23515
Cited By
Optimal Invariant Bases for Atomistic Machine Learning
30 March 2025
Alice Allen
Emily Shinkle
Roxana Bujack
Nicholas Lubbers
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimal Invariant Bases for Atomistic Machine Learning"
21 / 21 papers shown
Title
Cartesian atomic cluster expansion for machine learning interatomic potentials
Bingqing Cheng
51
32
0
12 Feb 2024
An introduction to graphical tensor notation for mechanistic interpretability
Jordan K. Taylor
45
2
0
02 Feb 2024
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Shengjie Luo
Tianlang Chen
Aditi S. Krishnapriyan
45
21
0
18 Jan 2024
TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials
Guillem Simeon
Gianni De Fabritiis
46
45
0
10 Jun 2023
Evaluation of the MACE Force Field Architecture: from Medicinal Chemistry to Materials Science
D. P. Kovács
Ilyes Batatia
E. Arany
Gábor Csányi
AI4CE
51
88
0
23 May 2023
Transfer learning for chemically accurate interatomic neural network potentials
Viktor Zaverkin
David Holzmüller
Luca Bonfirraro
Johannes Kastner
73
24
0
07 Dec 2022
Tensor-reduced atomic density representations
James P. Darby
D. P. Kovács
Ilyes Batatia
M. A. Caro
G. Hart
Christoph Ortner
Gábor Csányi
78
32
0
02 Oct 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
57
457
0
15 Jun 2022
The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials
Ilyes Batatia
Simon L. Batzner
D. P. Kovács
Albert Musaelian
G. Simm
R. Drautz
Christoph Ortner
Boris Kozinsky
Gábor Csányi
63
137
0
13 May 2022
Learning Local Equivariant Representations for Large-Scale Atomistic Dynamics
Albert Musaelian
Simon L. Batzner
A. Johansson
Lixin Sun
Cameron J. Owen
M. Kornbluth
Boris Kozinsky
37
436
0
11 Apr 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni De Fabritiis
AI4CE
45
191
0
05 Feb 2022
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
62
522
0
05 Feb 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
265
1,267
0
08 Jan 2021
Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules
Johannes Klicpera
Shankari Giri
Johannes T. Margraf
Stephan Günnemann
48
319
0
28 Nov 2020
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
75
897
0
14 Oct 2020
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
93
861
0
06 Mar 2020
Tune: A Research Platform for Distributed Model Selection and Training
Richard Liaw
Eric Liang
Robert Nishihara
Philipp Moritz
Joseph E. Gonzalez
Ion Stoica
117
887
0
13 Jul 2018
Group Normalization
Yuxin Wu
Kaiming He
124
3,626
0
22 Mar 2018
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
73
959
0
22 Feb 2018
Less is more: sampling chemical space with active learning
Justin S. Smith
B. Nebgen
Nicholas Lubbers
Olexandr Isayev
A. Roitberg
42
604
0
28 Jan 2018
Hierarchical modeling of molecular energies using a deep neural network
Nicholas Lubbers
Justin S. Smith
K. Barros
AI4CE
BDL
37
268
0
29 Sep 2017
1