Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2503.20139
Cited By
Look Before Leap: Look-Ahead Planning with Uncertainty in Reinforcement Learning
26 March 2025
Yongshuai Liu
Xin Liu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Look Before Leap: Look-Ahead Planning with Uncertainty in Reinforcement Learning"
32 / 32 papers shown
Title
Towards Fully Automated Decision-Making Systems for Greenhouse Control: Challenges and Opportunities
Yongshuai Liu
Taeyeong Choi
Xin Liu
AI4CE
80
0
0
27 Mar 2025
COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically for Model-Based RL
Xiyao Wang
Ruijie Zheng
Yanchao Sun
Ruonan Jia
Wichayaporn Wongkamjan
Huazhe Xu
Furong Huang
OffRL
64
12
0
11 Oct 2023
Plan To Predict: Learning an Uncertainty-Foreseeing Model for Model-Based Reinforcement Learning
Zifan Wu
Chao Yu
Chong Chen
Jianye Hao
H. Zhuo
29
16
0
20 Jan 2023
CLARA: A Constrained Reinforcement Learning Based Resource Allocation Framework for Network Slicing
Yongshuai Liu
J. Ding
Zhi-Li Zhang
Xin Liu
50
19
0
16 Nov 2021
Learning Off-Policy with Online Planning
Harshit S. Sikchi
Wenxuan Zhou
David Held
OffRL
60
46
0
23 Aug 2020
Planning to Explore via Self-Supervised World Models
Ramanan Sekar
Oleh Rybkin
Kostas Daniilidis
Pieter Abbeel
Danijar Hafner
Deepak Pathak
SSL
50
403
0
12 May 2020
Objective Mismatch in Model-based Reinforcement Learning
Nathan Lambert
Brandon Amos
Omry Yadan
Roberto Calandra
OffRL
26
97
0
11 Feb 2020
IPO: Interior-point Policy Optimization under Constraints
Yongshuai Liu
J. Ding
Xin Liu
36
178
0
21 Oct 2019
Model-based Lookahead Reinforcement Learning
Zhang-Wei Hong
Joni Pajarinen
Jan Peters
28
10
0
15 Aug 2019
Benchmarking Model-Based Reinforcement Learning
Tingwu Wang
Xuchan Bao
I. Clavera
Jerrick Hoang
Yeming Wen
Eric D. Langlois
Matthew Shunshi Zhang
Guodong Zhang
Pieter Abbeel
Jimmy Ba
OffRL
57
361
0
03 Jul 2019
When to Trust Your Model: Model-Based Policy Optimization
Michael Janner
Justin Fu
Marvin Zhang
Sergey Levine
OffRL
55
939
0
19 Jun 2019
Model-Based Reinforcement Learning for Atari
Lukasz Kaiser
Mohammad Babaeizadeh
Piotr Milos
B. Osinski
R. Campbell
...
Sergey Levine
Afroz Mohiuddin
Ryan Sepassi
George Tucker
Henryk Michalewski
OffRL
98
851
0
01 Mar 2019
Curiosity-Driven Experience Prioritization via Density Estimation
Rui Zhao
Volker Tresp
64
54
0
20 Feb 2019
Exploration by Random Network Distillation
Yuri Burda
Harrison Edwards
Amos Storkey
Oleg Klimov
95
1,310
0
30 Oct 2018
Algorithmic Framework for Model-based Deep Reinforcement Learning with Theoretical Guarantees
Yuping Luo
Huazhe Xu
Yuanzhi Li
Yuandong Tian
Trevor Darrell
Tengyu Ma
OffRL
90
225
0
10 Jul 2018
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
Kurtland Chua
Roberto Calandra
R. McAllister
Sergey Levine
BDL
166
1,263
0
30 May 2018
Model-Based Value Estimation for Efficient Model-Free Reinforcement Learning
Vladimir Feinberg
Alvin Wan
Ion Stoica
Michael I. Jordan
Joseph E. Gonzalez
Sergey Levine
OffRL
50
317
0
28 Feb 2018
Efficient Exploration through Bayesian Deep Q-Networks
Kamyar Azizzadenesheli
Anima Anandkumar
OffRL
BDL
69
162
0
13 Feb 2018
Efficient exploration with Double Uncertain Value Networks
Thomas M. Moerland
Joost Broekens
Catholijn M. Jonker
40
42
0
29 Nov 2017
Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents
Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
J. Veness
Matthew J. Hausknecht
Michael Bowling
63
549
0
18 Sep 2017
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning
Anusha Nagabandi
G. Kahn
R. Fearing
Sergey Levine
73
967
0
08 Aug 2017
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
236
18,685
0
20 Jul 2017
Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning
Yevgen Chebotar
Karol Hausman
Marvin Zhang
Gaurav Sukhatme
S. Schaal
Sergey Levine
58
160
0
08 Mar 2017
Count-Based Exploration with Neural Density Models
Georg Ostrovski
Marc G. Bellemare
Aaron van den Oord
Rémi Munos
74
616
0
03 Mar 2017
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic
S. Gu
Timothy Lillicrap
Zoubin Ghahramani
Richard Turner
Sergey Levine
OffRL
BDL
69
344
0
07 Nov 2016
Unifying Count-Based Exploration and Intrinsic Motivation
Marc G. Bellemare
S. Srinivasan
Georg Ostrovski
Tom Schaul
D. Saxton
Rémi Munos
162
1,465
0
06 Jun 2016
Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks
Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi-Velez
Steffen Udluft
BDL
31
158
0
23 May 2016
Continuous Deep Q-Learning with Model-based Acceleration
S. Gu
Timothy Lillicrap
Ilya Sutskever
Sergey Levine
62
1,010
0
02 Mar 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
476
9,233
0
06 Jun 2015
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
245
6,722
0
19 Feb 2015
Generalization and Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Zheng Wen
67
314
0
04 Feb 2014
The Arcade Learning Environment: An Evaluation Platform for General Agents
Marc G. Bellemare
Yavar Naddaf
J. Veness
Michael Bowling
78
2,992
0
19 Jul 2012
1