ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.07127
31
158

Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks

23 May 2016
Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi-Velez
Steffen Udluft
    BDL
ArXivPDFHTML
Abstract

We present an algorithm for model-based reinforcement learning that combines Bayesian neural networks (BNNs) with random roll-outs and stochastic optimization for policy learning. The BNNs are trained by minimizing α\alphaα-divergences, allowing us to capture complicated statistical patterns in the transition dynamics, e.g. multi-modality and heteroskedasticity, which are usually missed by other common modeling approaches. We illustrate the performance of our method by solving a challenging benchmark where model-based approaches usually fail and by obtaining promising results in a real-world scenario for controlling a gas turbine.

View on arXiv
Comments on this paper