Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2503.18069
Cited By
Long Is More Important Than Difficult for Training Reasoning Models
23 March 2025
Si Shen
Fei Huang
Zhixiao Zhao
Junfeng Fang
Tiansheng Zheng
Danhao Zhu
AIMat
RALM
LRM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Long Is More Important Than Difficult for Training Reasoning Models"
8 / 8 papers shown
Title
S*: Test Time Scaling for Code Generation
Dacheng Li
Shiyi Cao
Chengkun Cao
Xiuyu Li
Shangyin Tan
Kurt Keutzer
Jiarong Xing
Joseph E. Gonzalez
Ion Stoica
LRM
VLM
72
12
0
21 Feb 2025
SIFT: Grounding LLM Reasoning in Contexts via Stickers
Zihao Zeng
Xuyao Huang
Boxiu Li
Zhijie Deng
LRM
46
2
0
19 Feb 2025
LIMO: Less is More for Reasoning
Yixin Ye
Zhen Huang
Yang Xiao
Ethan Chern
Shijie Xia
Pengfei Liu
LRM
146
140
0
05 Feb 2025
Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters
Charlie Snell
Jaehoon Lee
Kelvin Xu
Aviral Kumar
LRM
143
626
0
06 Aug 2024
WizardMath: Empowering Mathematical Reasoning for Large Language Models via Reinforced Evol-Instruct
Haipeng Luo
Qingfeng Sun
Can Xu
Pu Zhao
Jian-Guang Lou
...
Xiubo Geng
Qingwei Lin
Shifeng Chen
Yansong Tang
Dongmei Zhang
LRM
OSLM
187
447
0
18 Aug 2023
Training Compute-Optimal Large Language Models
Jordan Hoffmann
Sebastian Borgeaud
A. Mensch
Elena Buchatskaya
Trevor Cai
...
Karen Simonyan
Erich Elsen
Jack W. Rae
Oriol Vinyals
Laurent Sifre
AI4TS
180
1,941
0
29 Mar 2022
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
672
41,736
0
28 May 2020
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
532
4,773
0
23 Jan 2020
1