Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2503.12978
Cited By
v1
v2
v3 (latest)
Enhancing Job Salary Prediction with Disentangled Composition Effect Modeling: A Neural Prototyping Approach
17 March 2025
Yang Ji
Ying Sun
Hengshu Zhu
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Enhancing Job Salary Prediction with Disentangled Composition Effect Modeling: A Neural Prototyping Approach"
33 / 33 papers shown
Title
Weakly Supervised Set-Consistency Learning Improves Morphological Profiling of Single-Cell Images
Heming Yao
Phil Hanslovsky
Jan-Christian Huetter
Burkhard Hoeckendorf
David Richmond
54
5
0
08 Jun 2024
LucidPPN: Unambiguous Prototypical Parts Network for User-centric Interpretable Computer Vision
Mateusz Pach
Dawid Rymarczyk
K. Lewandowska
Jacek Tabor
Bartosz Zieliñski
71
8
0
23 May 2024
Interpretable Prototype-based Graph Information Bottleneck
Sangwoo Seo
Sungwon Kim
Chanyoung Park
59
14
0
30 Oct 2023
This Looks Like Those: Illuminating Prototypical Concepts Using Multiple Visualizations
Chiyu Ma
Brandon Zhao
Chaofan Chen
Cynthia Rudin
68
29
0
28 Oct 2023
PointGPT: Auto-regressively Generative Pre-training from Point Clouds
Guang-Sheng Chen
Meiling Wang
Yi Yang
Kai Yu
Li-xin Yuan
Yufeng Yue
3DPC
47
88
0
19 May 2023
Interpreting Deep Forest through Feature Contribution and MDI Feature Importance
Yi He
Shen-Huan Lyu
Yuan Jiang
FAtt
92
4
0
01 May 2023
Towards Human-centered Explainable AI: A Survey of User Studies for Model Explanations
Yao Rong
Tobias Leemann
Thai-trang Nguyen
Lisa Fiedler
Peizhu Qian
Vaibhav Unhelkar
Tina Seidel
Gjergji Kasneci
Enkelejda Kasneci
ELM
63
99
0
20 Oct 2022
Pure Transformers are Powerful Graph Learners
Jinwoo Kim
Tien Dat Nguyen
Seonwoo Min
Sungjun Cho
Moontae Lee
Honglak Lee
Seunghoon Hong
88
200
0
06 Jul 2022
Set Norm and Equivariant Skip Connections: Putting the Deep in Deep Sets
Lily H. Zhang
Veronica Tozzo
J. Higgins
Rajesh Ranganath
BDL
MoE
61
17
0
23 Jun 2022
A Lightweight, Efficient and Explainable-by-Design Convolutional Neural Network for Internet Traffic Classification
Kevin Fauvel
Fuxing Chen
Dario Rossi
125
26
0
11 Feb 2022
Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism
Siqi Miao
Miaoyuan Liu
Pan Li
85
211
0
31 Jan 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks
Eli Chien
Chao Pan
Jianhao Peng
O. Milenkovic
GNN
98
133
0
24 Jun 2021
SelfExplain: A Self-Explaining Architecture for Neural Text Classifiers
Dheeraj Rajagopal
Vidhisha Balachandran
Eduard H. Hovy
Yulia Tsvetkov
MILM
SSL
FAtt
AI4TS
65
67
0
23 Mar 2021
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Meike Nauta
Ron van Bree
C. Seifert
148
269
0
03 Dec 2020
ProtoPShare: Prototype Sharing for Interpretable Image Classification and Similarity Discovery
Dawid Rymarczyk
Lukasz Struski
Jacek Tabor
Bartosz Zieliñski
61
116
0
29 Nov 2020
How Does Selective Mechanism Improve Self-Attention Networks?
Xinwei Geng
Longyue Wang
Xing Wang
Bing Qin
Ting Liu
Zhaopeng Tu
AAML
84
36
0
03 May 2020
On Learning Sets of Symmetric Elements
Haggai Maron
Or Litany
Gal Chechik
Ethan Fetaya
63
135
0
20 Feb 2020
Convolutional Conditional Neural Processes
Jonathan Gordon
W. Bruinsma
Andrew Y. K. Foong
James Requeima
Yann Dubois
Richard Turner
BDL
80
168
0
29 Oct 2019
Interpretable and Steerable Sequence Learning via Prototypes
Yao Ming
Panpan Xu
Huamin Qu
Liu Ren
AI4TS
54
141
0
23 Jul 2019
Invariant and Equivariant Graph Networks
Haggai Maron
Heli Ben-Hamu
Nadav Shamir
Y. Lipman
138
507
0
24 Dec 2018
Janossy Pooling: Learning Deep Permutation-Invariant Functions for Variable-Size Inputs
R. Murphy
Balasubramaniam Srinivasan
Vinayak A. Rao
Yun Liang
113
192
0
05 Nov 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
243
1,186
0
27 Jun 2018
SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters
Yifan Xu
Tianqi Fan
Mingye Xu
Long Zeng
Yu Qiao
3DV
3DPC
218
773
0
30 Mar 2018
Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions
Oscar Li
Hao Liu
Chaofan Chen
Cynthia Rudin
176
591
0
13 Oct 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
725
132,199
0
12 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,002
0
22 May 2017
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
Huifeng Guo
Ruiming Tang
Yunming Ye
Zhenguo Li
Xiuqiang He
122
2,650
0
13 Mar 2017
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
415
2,473
0
10 Mar 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
188
6,015
0
04 Mar 2017
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas Guibas
3DH
3DPC
3DV
PINN
493
14,353
0
02 Dec 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
321
20,070
0
07 Oct 2016
Wide & Deep Learning for Recommender Systems
Heng-Tze Cheng
L. Koc
Jeremiah Harmsen
T. Shaked
Tushar Chandra
...
Zakaria Haque
Lichan Hong
Vihan Jain
Xiaobing Liu
Hemal Shah
HAI
VLM
187
3,662
0
24 Jun 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,260
0
22 Dec 2014
1