ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.12978
  4. Cited By
Enhancing Job Salary Prediction with Disentangled Composition Effect Modeling: A Neural Prototyping Approach
v1v2v3 (latest)

Enhancing Job Salary Prediction with Disentangled Composition Effect Modeling: A Neural Prototyping Approach

17 March 2025
Yang Ji
Ying Sun
Hengshu Zhu
ArXiv (abs)PDFHTML

Papers citing "Enhancing Job Salary Prediction with Disentangled Composition Effect Modeling: A Neural Prototyping Approach"

33 / 33 papers shown
Title
Weakly Supervised Set-Consistency Learning Improves Morphological
  Profiling of Single-Cell Images
Weakly Supervised Set-Consistency Learning Improves Morphological Profiling of Single-Cell Images
Heming Yao
Phil Hanslovsky
Jan-Christian Huetter
Burkhard Hoeckendorf
David Richmond
54
5
0
08 Jun 2024
LucidPPN: Unambiguous Prototypical Parts Network for User-centric
  Interpretable Computer Vision
LucidPPN: Unambiguous Prototypical Parts Network for User-centric Interpretable Computer Vision
Mateusz Pach
Dawid Rymarczyk
K. Lewandowska
Jacek Tabor
Bartosz Zieliñski
71
8
0
23 May 2024
Interpretable Prototype-based Graph Information Bottleneck
Interpretable Prototype-based Graph Information Bottleneck
Sangwoo Seo
Sungwon Kim
Chanyoung Park
59
14
0
30 Oct 2023
This Looks Like Those: Illuminating Prototypical Concepts Using Multiple
  Visualizations
This Looks Like Those: Illuminating Prototypical Concepts Using Multiple Visualizations
Chiyu Ma
Brandon Zhao
Chaofan Chen
Cynthia Rudin
68
29
0
28 Oct 2023
PointGPT: Auto-regressively Generative Pre-training from Point Clouds
PointGPT: Auto-regressively Generative Pre-training from Point Clouds
Guang-Sheng Chen
Meiling Wang
Yi Yang
Kai Yu
Li-xin Yuan
Yufeng Yue
3DPC
47
88
0
19 May 2023
Interpreting Deep Forest through Feature Contribution and MDI Feature
  Importance
Interpreting Deep Forest through Feature Contribution and MDI Feature Importance
Yi He
Shen-Huan Lyu
Yuan Jiang
FAtt
92
4
0
01 May 2023
Towards Human-centered Explainable AI: A Survey of User Studies for
  Model Explanations
Towards Human-centered Explainable AI: A Survey of User Studies for Model Explanations
Yao Rong
Tobias Leemann
Thai-trang Nguyen
Lisa Fiedler
Peizhu Qian
Vaibhav Unhelkar
Tina Seidel
Gjergji Kasneci
Enkelejda Kasneci
ELM
63
99
0
20 Oct 2022
Pure Transformers are Powerful Graph Learners
Pure Transformers are Powerful Graph Learners
Jinwoo Kim
Tien Dat Nguyen
Seonwoo Min
Sungjun Cho
Moontae Lee
Honglak Lee
Seunghoon Hong
88
200
0
06 Jul 2022
Set Norm and Equivariant Skip Connections: Putting the Deep in Deep Sets
Set Norm and Equivariant Skip Connections: Putting the Deep in Deep Sets
Lily H. Zhang
Veronica Tozzo
J. Higgins
Rajesh Ranganath
BDLMoE
61
17
0
23 Jun 2022
A Lightweight, Efficient and Explainable-by-Design Convolutional Neural
  Network for Internet Traffic Classification
A Lightweight, Efficient and Explainable-by-Design Convolutional Neural Network for Internet Traffic Classification
Kevin Fauvel
Fuxing Chen
Dario Rossi
125
26
0
11 Feb 2022
Interpretable and Generalizable Graph Learning via Stochastic Attention
  Mechanism
Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism
Siqi Miao
Miaoyuan Liu
Pan Li
85
211
0
31 Jan 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural
  Networks
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks
Eli Chien
Chao Pan
Jianhao Peng
O. Milenkovic
GNN
98
133
0
24 Jun 2021
SelfExplain: A Self-Explaining Architecture for Neural Text Classifiers
SelfExplain: A Self-Explaining Architecture for Neural Text Classifiers
Dheeraj Rajagopal
Vidhisha Balachandran
Eduard H. Hovy
Yulia Tsvetkov
MILMSSLFAttAI4TS
65
67
0
23 Mar 2021
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Meike Nauta
Ron van Bree
C. Seifert
148
269
0
03 Dec 2020
ProtoPShare: Prototype Sharing for Interpretable Image Classification
  and Similarity Discovery
ProtoPShare: Prototype Sharing for Interpretable Image Classification and Similarity Discovery
Dawid Rymarczyk
Lukasz Struski
Jacek Tabor
Bartosz Zieliñski
61
116
0
29 Nov 2020
How Does Selective Mechanism Improve Self-Attention Networks?
How Does Selective Mechanism Improve Self-Attention Networks?
Xinwei Geng
Longyue Wang
Xing Wang
Bing Qin
Ting Liu
Zhaopeng Tu
AAML
84
36
0
03 May 2020
On Learning Sets of Symmetric Elements
On Learning Sets of Symmetric Elements
Haggai Maron
Or Litany
Gal Chechik
Ethan Fetaya
63
135
0
20 Feb 2020
Convolutional Conditional Neural Processes
Convolutional Conditional Neural Processes
Jonathan Gordon
W. Bruinsma
Andrew Y. K. Foong
James Requeima
Yann Dubois
Richard Turner
BDL
80
168
0
29 Oct 2019
Interpretable and Steerable Sequence Learning via Prototypes
Interpretable and Steerable Sequence Learning via Prototypes
Yao Ming
Panpan Xu
Huamin Qu
Liu Ren
AI4TS
54
141
0
23 Jul 2019
Invariant and Equivariant Graph Networks
Invariant and Equivariant Graph Networks
Haggai Maron
Heli Ben-Hamu
Nadav Shamir
Y. Lipman
138
507
0
24 Dec 2018
Janossy Pooling: Learning Deep Permutation-Invariant Functions for
  Variable-Size Inputs
Janossy Pooling: Learning Deep Permutation-Invariant Functions for Variable-Size Inputs
R. Murphy
Balasubramaniam Srinivasan
Vinayak A. Rao
Yun Liang
113
192
0
05 Nov 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
243
1,186
0
27 Jun 2018
SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional
  Filters
SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters
Yifan Xu
Tianqi Fan
Mingye Xu
Long Zeng
Yu Qiao
3DV3DPC
218
773
0
30 Mar 2018
Deep Learning for Case-Based Reasoning through Prototypes: A Neural
  Network that Explains Its Predictions
Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions
Oscar Li
Hao Liu
Chaofan Chen
Cynthia Rudin
176
591
0
13 Oct 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
725
132,199
0
12 Jun 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,002
0
22 May 2017
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
Huifeng Guo
Ruiming Tang
Yunming Ye
Zhenguo Li
Xiuqiang He
122
2,650
0
13 Mar 2017
Deep Sets
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
415
2,473
0
10 Mar 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OODFAtt
188
6,015
0
04 Mar 2017
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas Guibas
3DH3DPC3DVPINN
493
14,353
0
02 Dec 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
321
20,070
0
07 Oct 2016
Wide & Deep Learning for Recommender Systems
Wide & Deep Learning for Recommender Systems
Heng-Tze Cheng
L. Koc
Jeremiah Harmsen
T. Shaked
Tushar Chandra
...
Zakaria Haque
Lichan Hong
Vihan Jain
Xiaobing Liu
Hemal Shah
HAIVLM
187
3,662
0
24 Jun 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,260
0
22 Dec 2014
1