ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.12347
  4. Cited By
Synthesizing Privacy-Preserving Text Data via Finetuning without Finetuning Billion-Scale LLMs

Synthesizing Privacy-Preserving Text Data via Finetuning without Finetuning Billion-Scale LLMs

16 March 2025
Bowen Tan
Zheng Xu
Eric P. Xing
Zhiting Hu
Shanshan Wu
    SyDa
ArXiv (abs)PDFHTML

Papers citing "Synthesizing Privacy-Preserving Text Data via Finetuning without Finetuning Billion-Scale LLMs"

39 / 39 papers shown
Title
Synthesizing and Adapting Error Correction Data for Mobile Large Language Model Applications
Synthesizing and Adapting Error Correction Data for Mobile Large Language Model Applications
Yanxiang Zhang
Zheng Xu
Shanshan Wu
Yuanbo Zhang
Daniel Ramage
KELM
22
0
0
24 May 2025
Private Text Generation by Seeding Large Language Model Prompts
Private Text Generation by Seeding Large Language Model Prompts
Supriya Nagesh
Justin Y. Chen
Nina Mishra
Tal Wagner
SyDaSILM
94
2
0
20 Feb 2025
Federated Learning in Practice: Reflections and Projections
Federated Learning in Practice: Reflections and Projections
Katharine Daly
Hubert Eichner
Peter Kairouz
H. B. McMahan
Daniel Ramage
Zheng Xu
FedML
94
10
0
11 Oct 2024
KnowledgeSG: Privacy-Preserving Synthetic Text Generation with Knowledge
  Distillation from Server
KnowledgeSG: Privacy-Preserving Synthetic Text Generation with Knowledge Distillation from Server
Wenhao Wang
Xiaoyu Liang
Rui Ye
Jingyi Chai
Siheng Chen
Yanfeng Wang
SyDa
77
6
0
08 Oct 2024
Gemma 2: Improving Open Language Models at a Practical Size
Gemma 2: Improving Open Language Models at a Practical Size
Gemma Team
Gemma Team Morgane Riviere
Shreya Pathak
Pier Giuseppe Sessa
Cassidy Hardin
...
Noah Fiedel
Armand Joulin
Kathleen Kenealy
Robert Dadashi
Alek Andreev
VLMMoEOSLM
143
916
0
31 Jul 2024
Private prediction for large-scale synthetic text generation
Private prediction for large-scale synthetic text generation
Kareem Amin
Alex Bie
Weiwei Kong
Alexey Kurakin
Natalia Ponomareva
Umar Syed
Andreas Terzis
Sergei Vassilvitskii
SyDaSILM
134
6
0
16 Jul 2024
PrE-Text: Training Language Models on Private Federated Data in the Age
  of LLMs
PrE-Text: Training Language Models on Private Federated Data in the Age of LLMs
Charlie Hou
Akshat Shrivastava
Hongyuan Zhan
Rylan Conway
Trang Le
Adithya Sagar
Giulia Fanti
Daniel Lazar
97
15
0
05 Jun 2024
Prompt Public Large Language Models to Synthesize Data for Private
  On-device Applications
Prompt Public Large Language Models to Synthesize Data for Private On-device Applications
Shanshan Wu
Zheng Xu
Yanxiang Zhang
Yuanbo Zhang
Daniel Ramage
SyDa
69
12
0
05 Apr 2024
Differentially Private Synthetic Data via Foundation Model APIs 2: Text
Differentially Private Synthetic Data via Foundation Model APIs 2: Text
Chulin Xie
Zinan Lin
A. Backurs
Sivakanth Gopi
Da Yu
...
Haotian Jiang
Huishuai Zhang
Yin Tat Lee
Yue Liu
Sergey Yekhanin
SyDa
108
44
0
04 Mar 2024
Privacy-Preserving Instructions for Aligning Large Language Models
Privacy-Preserving Instructions for Aligning Large Language Models
Da Yu
Peter Kairouz
Sewoong Oh
Zheng Xu
93
25
0
21 Feb 2024
Infini-gram: Scaling Unbounded n-gram Language Models to a Trillion Tokens
Infini-gram: Scaling Unbounded n-gram Language Models to a Trillion Tokens
Jiacheng Liu
Sewon Min
Luke Zettlemoyer
Yejin Choi
Hannaneh Hajishirzi
128
60
0
30 Jan 2024
Scalable Extraction of Training Data from (Production) Language Models
Scalable Extraction of Training Data from (Production) Language Models
Milad Nasr
Nicholas Carlini
Jonathan Hayase
Matthew Jagielski
A. Feder Cooper
Daphne Ippolito
Christopher A. Choquette-Choo
Eric Wallace
Florian Tramèr
Katherine Lee
SILM
73
356
0
28 Nov 2023
Locally Differentially Private Document Generation Using Zero Shot
  Prompting
Locally Differentially Private Document Generation Using Zero Shot Prompting
Saiteja Utpala
Sara Hooker
Pin-Yu Chen
45
39
0
24 Oct 2023
Privacy-Preserving In-Context Learning with Differentially Private
  Few-Shot Generation
Privacy-Preserving In-Context Learning with Differentially Private Few-Shot Generation
Xinyu Tang
Richard Shin
Huseyin A. Inan
Andre Manoel
Fatemehsadat Mireshghallah
Zinan Lin
Sivakanth Gopi
Janardhan Kulkarni
Robert Sim
118
60
0
21 Sep 2023
Harnessing large-language models to generate private synthetic text
Harnessing large-language models to generate private synthetic text
Alexey Kurakin
Natalia Ponomareva
Umar Syed
Liam MacDermed
Andreas Terzis
SILMSyDa
76
42
0
02 Jun 2023
Federated Learning of Gboard Language Models with Differential Privacy
Federated Learning of Gboard Language Models with Differential Privacy
Zheng Xu
Yanxiang Zhang
Galen Andrew
Christopher A. Choquette-Choo
Peter Kairouz
H. B. McMahan
Jesse Rosenstock
Yuanbo Zhang
FedML
108
81
0
29 May 2023
Flocks of Stochastic Parrots: Differentially Private Prompt Learning for
  Large Language Models
Flocks of Stochastic Parrots: Differentially Private Prompt Learning for Large Language Models
Haonan Duan
Adam Dziedzic
Nicolas Papernot
Franziska Boenisch
AAML
70
67
0
24 May 2023
Differentially Private Synthetic Data via Foundation Model APIs 1: Images
Differentially Private Synthetic Data via Foundation Model APIs 1: Images
Zinan Lin
Sivakanth Gopi
Janardhan Kulkarni
Harsha Nori
Sergey Yekhanin
139
44
0
24 May 2023
Synthetic Query Generation for Privacy-Preserving Deep Retrieval Systems
  using Differentially Private Language Models
Synthetic Query Generation for Privacy-Preserving Deep Retrieval Systems using Differentially Private Language Models
Aldo G. Carranza
Rezsa Farahani
Natalia Ponomareva
Alexey Kurakin
Matthew Jagielski
Milad Nasr
SyDa
51
7
0
10 May 2023
TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning
  with Hardware Support for Embeddings
TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings
N. Jouppi
George Kurian
Sheng Li
Peter C. Ma
R. Nagarajan
...
Brian Towles
C. Young
Xiaoping Zhou
Zongwei Zhou
David A. Patterson
BDLVLM
149
368
0
04 Apr 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential
  Privacy
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
152
181
0
01 Mar 2023
LLaMA: Open and Efficient Foundation Language Models
LLaMA: Open and Efficient Foundation Language Models
Hugo Touvron
Thibaut Lavril
Gautier Izacard
Xavier Martinet
Marie-Anne Lachaux
...
Faisal Azhar
Aurelien Rodriguez
Armand Joulin
Edouard Grave
Guillaume Lample
ALMPILM
1.5K
13,490
0
27 Feb 2023
Extracting Training Data from Diffusion Models
Extracting Training Data from Diffusion Models
Nicholas Carlini
Jamie Hayes
Milad Nasr
Matthew Jagielski
Vikash Sehwag
Florian Tramèr
Borja Balle
Daphne Ippolito
Eric Wallace
DiffM
142
618
0
30 Jan 2023
Synthetic Text Generation with Differential Privacy: A Simple and
  Practical Recipe
Synthetic Text Generation with Differential Privacy: A Simple and Practical Recipe
Xiang Yue
Huseyin A. Inan
Xuechen Li
Girish Kumar
Julia McAnallen
Hoda Shajari
Huan Sun
David Levitan
Robert Sim
142
86
0
25 Oct 2022
Differentially Private Language Models for Secure Data Sharing
Differentially Private Language Models for Secure Data Sharing
Justus Mattern
Zhijing Jin
Benjamin Weggenmann
Bernhard Schoelkopf
Mrinmaya Sachan
SyDa
86
51
0
25 Oct 2022
The Limits of Word Level Differential Privacy
The Limits of Word Level Differential Privacy
Justus Mattern
Benjamin Weggenmann
Florian Kerschbaum
55
50
0
02 May 2022
BERTopic: Neural topic modeling with a class-based TF-IDF procedure
BERTopic: Neural topic modeling with a class-based TF-IDF procedure
M. Grootendorst
163
1,498
0
11 Mar 2022
Differentially Private Fine-tuning of Language Models
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
242
372
0
13 Oct 2021
TEM: High Utility Metric Differential Privacy on Text
TEM: High Utility Metric Differential Privacy on Text
Ricardo Silva Carvalho
Theodore Vasiloudis
Oluwaseyi Feyisetan
68
36
0
16 Jul 2021
Beyond Goldfish Memory: Long-Term Open-Domain Conversation
Beyond Goldfish Memory: Long-Term Open-Domain Conversation
Jing Xu
Arthur Szlam
Jason Weston
RALM
62
256
0
15 Jul 2021
MAUVE: Measuring the Gap Between Neural Text and Human Text using
  Divergence Frontiers
MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers
Krishna Pillutla
Swabha Swayamdipta
Rowan Zellers
John Thickstun
Sean Welleck
Yejin Choi
Zaïd Harchaoui
131
363
0
02 Feb 2021
Extracting Training Data from Large Language Models
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
Basel Alomair
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAUSILM
520
1,956
0
14 Dec 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedMLAI4CE
279
6,307
0
10 Dec 2019
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language
  Generation, Translation, and Comprehension
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
M. Lewis
Yinhan Liu
Naman Goyal
Marjan Ghazvininejad
Abdel-rahman Mohamed
Omer Levy
Veselin Stoyanov
Luke Zettlemoyer
AIMatVLM
266
10,880
0
29 Oct 2019
Privacy- and Utility-Preserving Textual Analysis via Calibrated
  Multivariate Perturbations
Privacy- and Utility-Preserving Textual Analysis via Calibrated Multivariate Perturbations
Oluwaseyi Feyisetan
Borja Balle
Thomas Drake
Tom Diethe
62
157
0
20 Oct 2019
Federated Learning for Mobile Keyboard Prediction
Federated Learning for Mobile Keyboard Prediction
Andrew Straiton Hard
Kanishka Rao
Zhifeng Lin
Swaroop Indra Ramaswamy
Youjie Li
S. Augenstein
Alex Schwing
M. Annavaram
A. Avestimehr
FedML
138
1,549
0
08 Nov 2018
Deep Learning with Differential Privacy
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedMLSyDa
220
6,172
0
01 Jul 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
414
17,615
0
17 Feb 2016
Differentially Private Empirical Risk Minimization: Efficient Algorithms
  and Tight Error Bounds
Differentially Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds
Raef Bassily
Adam D. Smith
Abhradeep Thakurta
FedML
150
371
0
27 May 2014
1