Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2503.02169
Cited By
v1
v2 (latest)
One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy
4 March 2025
Jiacheng Zhang
Benjamin I. P. Rubinstein
Jing Zhang
Feng Liu
Author Contacts:
fengliu.ml@gmail.com
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy"
50 / 60 papers shown
Title
Improving Accuracy-robustness Trade-off via Pixel Reweighted Adversarial Training
Jiacheng Zhang
Feng Liu
Dawei Zhou
Jingfeng Zhang
Tongliang Liu
AAML
51
4
0
02 Jun 2024
Adversarial Robustness Limits via Scaling-Law and Human-Alignment Studies
Brian Bartoldson
James Diffenderfer
Konstantinos Parasyris
B. Kailkhura
AAML
113
19
0
14 Apr 2024
Adversarial Training on Purification (AToP): Advancing Both Robustness and Generalization
Guang Lin
Chao Li
Jianhai Zhang
Toshihisa Tanaka
Qibin Zhao
62
14
0
29 Jan 2024
Detecting Adversarial Data by Probing Multiple Perturbations Using Expected Perturbation Score
Shuhai Zhang
Feng Liu
Jiahao Yang
Yifan Yang
Changsheng Li
Bo Han
Mingkui Tan
DiffM
AAML
47
17
0
25 May 2023
Robust Classification via a Single Diffusion Model
Huanran Chen
Yinpeng Dong
Zhengyi Wang
Xiaohu Yang
Chen-Dong Duan
Hang Su
Jun Zhu
110
60
0
24 May 2023
Robust Evaluation of Diffusion-Based Adversarial Purification
M. Lee
Dongwoo Kim
109
62
0
16 Mar 2023
(Certified!!) Adversarial Robustness for Free!
Nicholas Carlini
Florian Tramèr
Krishnamurthy Dvijotham
Leslie Rice
Mingjie Sun
J. Zico Kolter
DiffM
87
150
0
21 Jun 2022
Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack
Ruize Gao
Jiongxiao Wang
Kaiwen Zhou
Feng Liu
Binghui Xie
Gang Niu
Bo Han
James Cheng
AAML
41
15
0
15 Jun 2022
Guided Diffusion Model for Adversarial Purification
Jinyi Wang
Zhaoyang Lyu
Dahua Lin
Bo Dai
Hongfei Fu
DiffM
247
88
0
30 May 2022
Diffusion Models for Adversarial Purification
Weili Nie
Brandon Guo
Yujia Huang
Chaowei Xiao
Arash Vahdat
Anima Anandkumar
WIGM
260
444
0
16 May 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
113
123
0
21 Feb 2022
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
91
301
0
18 Oct 2021
Robustness and Generalization via Generative Adversarial Training
Omid Poursaeed
Tianxing Jiang
Harry Yang
Serge Belongie
SerNam Lim
OOD
AAML
55
26
0
06 Sep 2021
Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion based Perception in Autonomous Driving Under Physical-World Attacks
Yulong Cao*
Ningfei Wang*
Chaowei Xiao
Dawei Yang
Jin Fang
Ruigang Yang
Qi Alfred Chen
Mingyan D. Liu
Yue Liu
AAML
86
223
0
17 Jun 2021
Probabilistic Margins for Instance Reweighting in Adversarial Training
Qizhou Wang
Feng Liu
Bo Han
Tongliang Liu
Chen Gong
Gang Niu
Mingyuan Zhou
Masashi Sugiyama
AAML
67
65
0
15 Jun 2021
Adversarial purification with Score-based generative models
Jongmin Yoon
Sung Ju Hwang
Juho Lee
DiffM
87
156
0
11 Jun 2021
Two Coupled Rejection Metrics Can Tell Adversarial Examples Apart
Tianyu Pang
Huishuai Zhang
Di He
Yinpeng Dong
Hang Su
Wei Chen
Jun Zhu
Tie-Yan Liu
AAML
34
18
0
31 May 2021
Robust Learning Meets Generative Models: Can Proxy Distributions Improve Adversarial Robustness?
Vikash Sehwag
Saeed Mahloujifar
Tinashe Handina
Sihui Dai
Chong Xiang
M. Chiang
Prateek Mittal
OOD
85
130
0
19 Apr 2021
LiBRe: A Practical Bayesian Approach to Adversarial Detection
Zhijie Deng
Xiao Yang
Shizhen Xu
Hang Su
Jun Zhu
BDL
AAML
59
62
0
27 Mar 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
450
21,439
0
25 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
90
272
0
02 Mar 2021
Maximum Mean Discrepancy Test is Aware of Adversarial Attacks
Ruize Gao
Feng Liu
Jingfeng Zhang
Bo Han
Tongliang Liu
Gang Niu
Masashi Sugiyama
AAML
62
56
0
22 Oct 2020
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
322
702
0
19 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
52
331
0
07 Oct 2020
Geometry-aware Instance-reweighted Adversarial Training
Jingfeng Zhang
Jianing Zhu
Gang Niu
Bo Han
Masashi Sugiyama
Mohan Kankanhalli
AAML
53
277
0
05 Oct 2020
Bag of Tricks for Adversarial Training
Tianyu Pang
Xiao Yang
Yinpeng Dong
Hang Su
Jun Zhu
AAML
78
269
0
01 Oct 2020
A General Framework For Detecting Anomalous Inputs to DNN Classifiers
Jayaram Raghuram
Varun Chandrasekaran
S. Jha
Suman Banerjee
AAML
59
35
0
29 Jul 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
Aleksander Madry
72
425
0
16 Jul 2020
Perceptual Adversarial Robustness: Defense Against Unseen Threat Models
Cassidy Laidlaw
Sahil Singla
Soheil Feizi
AAML
OOD
89
187
0
22 Jun 2020
A Self-supervised Approach for Adversarial Robustness
Muzammal Naseer
Salman Khan
Munawar Hayat
Fahad Shahbaz Khan
Fatih Porikli
AAML
74
260
0
08 Jun 2020
Stochastic Security: Adversarial Defense Using Long-Run Dynamics of Energy-Based Models
Mitch Hill
Jonathan Mitchell
Song-Chun Zhu
AAML
60
70
0
27 May 2020
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
157
102
0
20 Mar 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
216
1,846
0
03 Mar 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
108
804
0
26 Feb 2020
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu
Wenkai Xu
Jie Lu
Guangquan Zhang
Arthur Gretton
Danica J. Sutherland
49
186
0
21 Feb 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
138
1,179
0
12 Jan 2020
Square Attack: a query-efficient black-box adversarial attack via random search
Maksym Andriushchenko
Francesco Croce
Nicolas Flammarion
Matthias Hein
AAML
85
988
0
29 Nov 2019
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack
Francesco Croce
Matthias Hein
AAML
90
488
0
03 Jul 2019
Unlabeled Data Improves Adversarial Robustness
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
127
752
0
31 May 2019
ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation
Yuzhe Yang
Guo Zhang
Dina Katabi
Zhi Xu
AAML
88
170
0
28 May 2019
Efficient Decision-based Black-box Adversarial Attacks on Face Recognition
Yinpeng Dong
Hang Su
Baoyuan Wu
Zhifeng Li
Wen Liu
Tong Zhang
Jun Zhu
CVBM
AAML
77
407
0
09 Apr 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
137
2,551
0
24 Jan 2019
MMA Training: Direct Input Space Margin Maximization through Adversarial Training
G. Ding
Yash Sharma
Kry Yik-Chau Lui
Ruitong Huang
AAML
73
273
0
06 Dec 2018
Improving the Generalization of Adversarial Training with Domain Adaptation
Chuanbiao Song
Kun He
Liwei Wang
John E. Hopcroft
AAML
OOD
94
132
0
01 Oct 2018
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee
Kibok Lee
Honglak Lee
Jinwoo Shin
OODD
187
2,051
0
10 Jul 2018
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
84
1,178
0
17 May 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
226
3,186
0
01 Feb 2018
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
Xingjun Ma
Yue Liu
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
Basel Alomair
Michael E. Houle
James Bailey
AAML
111
739
0
08 Jan 2018
Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser
Fangzhou Liao
Ming Liang
Yinpeng Dong
Tianyu Pang
Xiaolin Hu
Jun Zhu
83
886
0
08 Dec 2017
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
AAML
110
790
0
30 Oct 2017
1
2
Next