ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.00924
  4. Cited By

PABBO: Preferential Amortized Black-Box Optimization

2 March 2025
Xinyu Zhang
Daolang Huang
Samuel Kaski
Julien Martinelli
ArXiv (abs)PDFHTML

Papers citing "PABBO: Preferential Amortized Black-Box Optimization"

32 / 32 papers shown
Title
Amortized Bayesian Experimental Design for Decision-Making
Amortized Bayesian Experimental Design for Decision-Making
Daolang Huang
Yujia Guo
Luigi Acerbi
Samuel Kaski
101
3
0
03 Jan 2025
Amortized Probabilistic Conditioning for Optimization, Simulation and Inference
Amortized Probabilistic Conditioning for Optimization, Simulation and Inference
Paul E. Chang
Nasrulloh Loka
Daolang Huang
Ulpu Remes
Samuel Kaski
Luigi Acerbi
AI4CE
96
8
0
20 Oct 2024
Principled Preferential Bayesian Optimization
Principled Preferential Bayesian Optimization
Wenjie Xu
Wenbin Wang
Yuning Jiang
B. Svetozarevic
Colin N. Jones
58
8
0
08 Feb 2024
A General Framework for User-Guided Bayesian Optimization
A General Framework for User-Guided Bayesian Optimization
Carl Hvarfner
Frank Hutter
Luigi Nardi
GP
81
13
0
24 Nov 2023
Looping in the Human Collaborative and Explainable Bayesian Optimization
Looping in the Human Collaborative and Explainable Bayesian Optimization
Masaki Adachi
Brady Planden
David A. Howey
Michael A. Osborne
Sebastian Orbell
Natalia Ares
Krikamol Maundet
Siu Lun Chau
89
14
0
26 Oct 2023
Direct Preference Optimization: Your Language Model is Secretly a Reward
  Model
Direct Preference Optimization: Your Language Model is Secretly a Reward Model
Rafael Rafailov
Archit Sharma
E. Mitchell
Stefano Ermon
Christopher D. Manning
Chelsea Finn
ALM
389
4,169
0
29 May 2023
Modern Bayesian Experimental Design
Modern Bayesian Experimental Design
Tom Rainforth
Adam Foster
Desi R. Ivanova
Freddie Bickford-Smith
97
88
0
28 Feb 2023
MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning
MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning
Adam X. Yang
Laurence Aitchison
Henry B. Moss
89
4
0
22 Feb 2023
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard Turner
L. Yao
BDL
162
24
0
01 Sep 2022
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via
  Sequence Modeling
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via Sequence Modeling
Tung Nguyen
Aditya Grover
BDLUQCV
85
107
0
09 Jul 2022
Towards Learning Universal Hyperparameter Optimizers with Transformers
Towards Learning Universal Hyperparameter Optimizers with Transformers
Yutian Chen
Xingyou Song
Chansoo Lee
Zehao Wang
Qiuyi Zhang
...
Greg Kochanski
Arnaud Doucet
MarcÁurelio Ranzato
Sagi Perel
Nando de Freitas
101
65
0
26 May 2022
Preference Exploration for Efficient Bayesian Optimization with Multiple
  Outcomes
Preference Exploration for Efficient Bayesian Optimization with Multiple Outcomes
Zhiyuan Jerry Lin
Raul Astudillo
P. Frazier
E. Bakshy
62
38
0
21 Mar 2022
Practical Conditional Neural Processes Via Tractable Dependent
  Predictions
Practical Conditional Neural Processes Via Tractable Dependent Predictions
Stratis Markou
James Requeima
W. Bruinsma
Anna Vaughan
Richard Turner
UQCVAI4CE
81
25
0
16 Mar 2022
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLMALM
894
13,228
0
04 Mar 2022
Targeting occupant feedback using digital twins: Adaptive
  spatial-temporal thermal preference sampling to optimize personal comfort
  models
Targeting occupant feedback using digital twins: Adaptive spatial-temporal thermal preference sampling to optimize personal comfort models
Mahmoud Abdelrahman
Clayton Miller
38
28
0
22 Feb 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
158
48
0
01 Feb 2022
Transformers Can Do Bayesian Inference
Transformers Can Do Bayesian Inference
Samuel G. Müller
Noah Hollmann
Sebastian Pineda Arango
Josif Grabocka
Frank Hutter
BDLUQCV
92
170
0
20 Dec 2021
Implicit Deep Adaptive Design: Policy-Based Experimental Design without
  Likelihoods
Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods
Desi R. Ivanova
Adam Foster
Steven Kleinegesse
Michael U. Gutmann
Tom Rainforth
OffRL
120
48
0
03 Nov 2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Adam Foster
Desi R. Ivanova
Ilyas Malik
Tom Rainforth
67
85
0
03 Mar 2021
Top-$k$ Ranking Bayesian Optimization
Top-kkk Ranking Bayesian Optimization
Q. Nguyen
Sebastian Shenghong Tay
Bryan Kian Hsiang Low
Patrick Jaillet
85
22
0
19 Dec 2020
Learning to summarize from human feedback
Learning to summarize from human feedback
Nisan Stiennon
Long Ouyang
Jeff Wu
Daniel M. Ziegler
Ryan J. Lowe
Chelsea Voss
Alec Radford
Dario Amodei
Paul Christiano
ALM
262
2,192
0
02 Sep 2020
Sequential Gallery for Interactive Visual Design Optimization
Sequential Gallery for Interactive Visual Design Optimization
Yuki Koyama
Issei Sato
Masataka Goto
64
76
0
08 May 2020
Preferential Batch Bayesian Optimization
Preferential Batch Bayesian Optimization
E. Siivola
Akash Kumar Dhaka
Michael Riis Andersen
Javier I. González
Pablo G. Moreno
Aki Vehtari
49
23
0
25 Mar 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
568
42,677
0
03 Dec 2019
The frontier of simulation-based inference
The frontier of simulation-based inference
Kyle Cranmer
Johann Brehmer
Gilles Louppe
AI4CE
203
855
0
04 Nov 2019
Attentive Neural Processes
Attentive Neural Processes
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
106
442
0
17 Jan 2019
Preference-based Online Learning with Dueling Bandits: A Survey
Preference-based Online Learning with Dueling Bandits: A Survey
Viktor Bengs
R. Busa-Fekete
Adil El Mesaoudi-Paul
Eyke Hüllermeier
116
114
0
30 Jul 2018
Conditional Neural Processes
Conditional Neural Processes
M. Garnelo
Dan Rosenbaum
Chris J. Maddison
Tiago Ramalho
D. Saxton
Murray Shanahan
Yee Whye Teh
Danilo Jimenez Rezende
S. M. Ali Eslami
UQCVBDL
90
706
0
04 Jul 2018
Deep reinforcement learning from human preferences
Deep reinforcement learning from human preferences
Paul Christiano
Jan Leike
Tom B. Brown
Miljan Martic
Shane Legg
Dario Amodei
218
3,377
0
12 Jun 2017
Parallel and Distributed Thompson Sampling for Large-scale Accelerated
  Exploration of Chemical Space
Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space
José Miguel Hernández-Lobato
James Requeima
Edward O. Pyzer-Knapp
Alán Aspuru-Guzik
81
185
0
06 Jun 2017
Deep Sets
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
441
2,483
0
10 Mar 2017
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with
  Application to Active User Modeling and Hierarchical Reinforcement Learning
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
E. Brochu
Vlad M. Cora
Nando de Freitas
GP
138
2,449
0
12 Dec 2010
1