Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2502.14546
Cited By
Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks
21 February 2025
Maya Bechler-Speicher
Ben Finkelshtein
Fabrizio Frasca
Luis Muller
Jan Tönshoff
Antoine Siraudin
Viktor Zaverkin
Michael M. Bronstein
Mathias Niepert
Bryan Perozzi
Mikhail Galkin
Christopher Morris
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks"
27 / 27 papers shown
Title
Directed Semi-Simplicial Learning with Applications to Brain Activity Decoding
Manuel Lecha
Andrea Cavallo
Francesca Dominici
Ran Levi
Alessio Del Bue
Elvin Isufi
Pietro Morerio
Claudio Battiloro
AI4CE
42
0
0
23 May 2025
GraphRAFT: Retrieval Augmented Fine-Tuning for Knowledge Graphs on Graph Databases
Alfred Clemedtson
Borun Shi
RALM
90
1
0
07 Apr 2025
Cayley Graph Propagation
JJ Wilson
Maya Bechler-Speicher
Petar Veličković
114
6
0
04 Oct 2024
MANTRA: The Manifold Triangulations Assemblage
Rubén Ballester
Ernst Röell
Daniel Bin Schmid
Mathieu Alain
Sergio Escalera
Carles Casacuberta
Bastian Rieck
86
6
0
03 Oct 2024
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing
Viktor Zaverkin
Francesco Alesiani
Takashi Maruyama
Federico Errica
Henrik Christiansen
Makoto Takamoto
Nicolas Weber
Mathias Niepert
62
7
0
23 May 2024
Position: Why We Must Rethink Empirical Research in Machine Learning
Moritz Herrmann
F. J. D. Lange
Katharina Eggensperger
Giuseppe Casalicchio
Marcel Wever
Matthias Feurer
David Rügamer
Eyke Hüllermeier
A. Boulesteix
Bernd Bischl
66
6
0
03 May 2024
What Algorithms can Transformers Learn? A Study in Length Generalization
Hattie Zhou
Arwen Bradley
Etai Littwin
Noam Razin
Omid Saremi
Josh Susskind
Samy Bengio
Preetum Nakkiran
46
118
0
24 Oct 2023
Where Did the Gap Go? Reassessing the Long-Range Graph Benchmark
Jan Tönshoff
Martin Ritzert
Eran Rosenbluth
Martin Grohe
63
50
0
01 Sep 2023
Expander Graph Propagation
Andreea Deac
Marc Lackenby
Petar Velivcković
106
55
0
06 Oct 2022
A Generalist Neural Algorithmic Learner
Borja Ibarz
Vitaly Kurin
George Papamakarios
Kyriacos Nikiforou
Mehdi Abbana Bennani
...
Andreea Deac
Beatrice Bevilacqua
Yaroslav Ganin
Charles Blundell
Petar Velivcković
OOD
65
53
0
22 Sep 2022
Pure Transformers are Powerful Graph Learners
Jinwoo Kim
Tien Dat Nguyen
Seonwoo Min
Sungjun Cho
Moontae Lee
Honglak Lee
Seunghoon Hong
65
195
0
06 Jul 2022
Recipe for a General, Powerful, Scalable Graph Transformer
Ladislav Rampášek
Mikhail Galkin
Vijay Prakash Dwivedi
Anh Tuan Luu
Guy Wolf
Dominique Beaini
102
549
0
25 May 2022
Training Compute-Optimal Large Language Models
Jordan Hoffmann
Sebastian Borgeaud
A. Mensch
Elena Buchatskaya
Trevor Cai
...
Karen Simonyan
Erich Elsen
Jack W. Rae
Oriol Vinyals
Laurent Sifre
AI4TS
116
1,894
0
29 Mar 2022
GraphWorld: Fake Graphs Bring Real Insights for GNNs
John Palowitch
Anton Tsitsulin
Brandon Mayer
Bryan Perozzi
GNN
222
68
0
28 Feb 2022
Top-N: Equivariant set and graph generation without exchangeability
Clément Vignac
P. Frossard
BDL
81
34
0
05 Oct 2021
OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Hongyu Ren
Maho Nakata
Yuxiao Dong
J. Leskovec
AI4CE
55
403
0
17 Mar 2021
Attention is Not All You Need: Pure Attention Loses Rank Doubly Exponentially with Depth
Yihe Dong
Jean-Baptiste Cordonnier
Andreas Loukas
78
376
0
05 Mar 2021
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
67
522
0
05 Feb 2021
Design Space for Graph Neural Networks
Jiaxuan You
Rex Ying
J. Leskovec
GNN
AI4CE
109
317
0
17 Nov 2020
Graph Neural Networks in Recommender Systems: A Survey
Shiwen Wu
Fei Sun
Wentao Zhang
Xu Xie
Tengjiao Wang
GNN
114
1,202
0
04 Nov 2020
Labeling Trick: A Theory of Using Graph Neural Networks for Multi-Node Representation Learning
Muhan Zhang
Pan Li
Yinglong Xia
Kai Wang
Long Jin
43
188
0
30 Oct 2020
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
137
802
0
16 Jul 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
175
2,687
0
02 May 2020
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
141
7,554
0
01 Oct 2018
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
378
3,101
0
04 Jun 2018
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
499
3,264
0
24 Nov 2016
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
114
2,911
0
07 Oct 2016
1