Cayley Graph Propagation

In spite of the plethora of success stories with graph neural networks (GNNs) on modelling graph-structured data, they are notoriously vulnerable to over-squashing, whereby tasks necessitate the mixing of information between distance pairs of nodes. To address this problem, prior work suggests rewiring the graph structure to improve information flow. Alternatively, a significant body of research has dedicated itself to discovering and precomputing bottleneck-free graph structures to ameliorate over-squashing. One well regarded family of bottleneck-free graphs within the mathematical community are expander graphs, with prior work -- Expander Graph Propagation (EGP) -- proposing the use of a well-known expander graph family -- the Cayley graphs of the special linear group -- as a computational template for GNNs. However, in EGP the computational graphs used are truncated to align with a given input graph. In this work, we show that truncation is detrimental to the coveted expansion properties. Instead, we propose CGP, a method to propagate information over a complete Cayley graph structure, thereby ensuring it is bottleneck-free to better alleviate over-squashing. Our empirical evidence across several real-world datasets not only shows that CGP recovers significant improvements as compared to EGP, but it is also akin to or outperforms computationally complex graph rewiring techniques.
View on arXiv@article{wilson2025_2410.03424, title={ Cayley Graph Propagation }, author={ JJ Wilson and Maya Bechler-Speicher and Petar Veličković }, journal={arXiv preprint arXiv:2410.03424}, year={ 2025 } }