ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.12892
  4. Cited By
Archetypal SAE: Adaptive and Stable Dictionary Learning for Concept Extraction in Large Vision Models

Archetypal SAE: Adaptive and Stable Dictionary Learning for Concept Extraction in Large Vision Models

18 February 2025
Thomas Fel
Ekdeep Singh Lubana
Jacob S. Prince
M. Kowal
Victor Boutin
Isabel Papadimitriou
Binxu Wang
Martin Wattenberg
Demba Ba
Talia Konkle
ArXivPDFHTML

Papers citing "Archetypal SAE: Adaptive and Stable Dictionary Learning for Concept Extraction in Large Vision Models"

19 / 19 papers shown
Title
Ensembling Sparse Autoencoders
Ensembling Sparse Autoencoders
Soham Gadgil
Chris Lin
Su-In Lee
21
0
0
21 May 2025
Interpreting the linear structure of vision-language model embedding spaces
Interpreting the linear structure of vision-language model embedding spaces
Isabel Papadimitriou
Huangyuan Su
Thomas Fel
Naomi Saphra
Sham Kakade
VLM
72
0
0
16 Apr 2025
Projecting Assumptions: The Duality Between Sparse Autoencoders and Concept Geometry
Sai Sumedh R. Hindupur
Ekdeep Singh Lubana
Thomas Fel
Demba Ba
62
6
0
03 Mar 2025
One-Step is Enough: Sparse Autoencoders for Text-to-Image Diffusion Models
One-Step is Enough: Sparse Autoencoders for Text-to-Image Diffusion Models
Viacheslav Surkov
Chris Wendler
Mikhail Terekhov
Justin Deschenaux
Robert West
Robert West
Çağlar Gülçehre
David Bau
VLM
48
14
0
28 Oct 2024
Identifying Functionally Important Features with End-to-End Sparse
  Dictionary Learning
Identifying Functionally Important Features with End-to-End Sparse Dictionary Learning
Dan Braun
Jordan K. Taylor
Nicholas Goldowsky-Dill
Lee D. Sharkey
35
38
0
17 May 2024
Interpreting CLIP with Sparse Linear Concept Embeddings (SpLiCE)
Interpreting CLIP with Sparse Linear Concept Embeddings (SpLiCE)
Usha Bhalla
Alexander X. Oesterling
Suraj Srinivas
Flavio du Pin Calmon
Himabindu Lakkaraju
58
38
0
16 Feb 2024
A Holistic Approach to Unifying Automatic Concept Extraction and Concept
  Importance Estimation
A Holistic Approach to Unifying Automatic Concept Extraction and Concept Importance Estimation
Thomas Fel
Victor Boutin
Mazda Moayeri
Rémi Cadène
Louis Bethune
Léo Andéol
Mathieu Chalvidal
Thomas Serre
FAtt
29
57
0
11 Jun 2023
Sigmoid Loss for Language Image Pre-Training
Sigmoid Loss for Language Image Pre-Training
Xiaohua Zhai
Basil Mustafa
Alexander Kolesnikov
Lucas Beyer
CLIP
VLM
50
1,028
0
27 Mar 2023
Making Sense of Dependence: Efficient Black-box Explanations Using
  Dependence Measure
Making Sense of Dependence: Efficient Black-box Explanations Using Dependence Measure
Paul Novello
Thomas Fel
David Vigouroux
FAtt
33
28
0
13 Jun 2022
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural
  Network Explanations and Beyond
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond
Anna Hedström
Leander Weber
Dilyara Bareeva
Daniel G. Krakowczyk
Franz Motzkus
Wojciech Samek
Sebastian Lapuschkin
Marina M.-C. Höhne
XAI
ELM
26
173
0
14 Feb 2022
Visual Representation Learning Does Not Generalize Strongly Within the
  Same Domain
Visual Representation Learning Does Not Generalize Strongly Within the Same Domain
Lukas Schott
Julius von Kügelgen
Frederik Trauble
Peter V. Gehler
Chris Russell
Matthias Bethge
Bernhard Schölkopf
Francesco Locatello
Wieland Brendel
OOD
DRL
47
69
0
17 Jul 2021
K-Deep Simplex: Deep Manifold Learning via Local Dictionaries
K-Deep Simplex: Deep Manifold Learning via Local Dictionaries
Pranay Tankala
Abiy Tasissa
James M. Murphy
Demba E. Ba
29
11
0
03 Dec 2020
RISE: Randomized Input Sampling for Explanation of Black-box Models
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
89
1,159
0
19 Jun 2018
On Identifiability of Nonnegative Matrix Factorization
On Identifiability of Nonnegative Matrix Factorization
Xiao Fu
Kejun Huang
N. Sidiropoulos
50
94
0
02 Sep 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
18
1,514
0
11 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
52
5,920
0
04 Mar 2017
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
36
15,825
0
12 Nov 2013
Learning Topic Models - Going beyond SVD
Learning Topic Models - Going beyond SVD
Sanjeev Arora
Rong Ge
Ankur Moitra
39
432
0
09 Apr 2012
Structured sparsity through convex optimization
Structured sparsity through convex optimization
Francis R. Bach
Rodolphe Jenatton
Julien Mairal
G. Obozinski
110
324
0
12 Sep 2011
1