ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.05214
  4. Cited By
CoRPA: Adversarial Image Generation for Chest X-rays Using Concept Vector Perturbations and Generative Models

CoRPA: Adversarial Image Generation for Chest X-rays Using Concept Vector Perturbations and Generative Models

4 February 2025
Amy Rafferty
Rishi Ramaesh
Ajitha Rajan
    MedIm
    AAML
ArXivPDFHTML

Papers citing "CoRPA: Adversarial Image Generation for Chest X-rays Using Concept Vector Perturbations and Generative Models"

41 / 41 papers shown
Title
Generating Realistic X-ray Scattering Images Using Stable Diffusion and
  Human-in-the-loop Annotations
Generating Realistic X-ray Scattering Images Using Stable Diffusion and Human-in-the-loop Annotations
Zhuowen Zhao
Xiaoya Chong
Tanny Chavez
Alexander Hexemer
68
1
0
22 Aug 2024
Chest-Diffusion: A Light-Weight Text-to-Image Model for Report-to-CXR
  Generation
Chest-Diffusion: A Light-Weight Text-to-Image Model for Report-to-CXR Generation
Peng Huang
Xue Gao
Lihong Huang
Jing Jiao
Xiaokang Li
Yuanyuan Wang
Yi Guo
MedIm
DiffM
48
9
0
30 Jun 2024
Towards long-tailed, multi-label disease classification from chest
  X-ray: Overview of the CXR-LT challenge
Towards long-tailed, multi-label disease classification from chest X-ray: Overview of the CXR-LT challenge
G. Holste
Yiliang Zhou
Song Wang
Ajay Jaiswal
Mingquan Lin
...
Zhiyong Lu
Ronald M. Summers
George Shih
Zhangyang Wang
Yifan Peng
48
16
0
24 Oct 2023
Cross-Modal Conceptualization in Bottleneck Models
Cross-Modal Conceptualization in Bottleneck Models
Danis Alukaev
S. Kiselev
Ilya Pershin
Bulat Ibragimov
Vladimir Ivanov
Alexey Kornaev
Ivan Titov
64
7
0
23 Oct 2023
PIE: Simulating Disease Progression via Progressive Image Editing
PIE: Simulating Disease Progression via Progressive Image Editing
Kaizhao Liang
Xu Cao
Kuei-Da Liao
Tianren Gao
Wenqian Ye
Zhengyu Chen
Jianguo Cao
Tejas Nama
Jimeng Sun
MedIm
AI4CE
56
5
0
21 Sep 2023
Evaluating the feasibility of using Generative Models to generate Chest
  X-Ray Data
Evaluating the feasibility of using Generative Models to generate Chest X-Ray Data
Muhammad Danyal Malik
Danish Humair
LM&MA
MedIm
36
3
0
30 May 2023
Adapting Pretrained Vision-Language Foundational Models to Medical
  Imaging Domains
Adapting Pretrained Vision-Language Foundational Models to Medical Imaging Domains
Pierre J. Chambon
Christian Blüthgen
C. Langlotz
Akshay S. Chaudhari
DiffM
MedIm
LM&MA
52
115
0
09 Oct 2022
A ConvNet for the 2020s
A ConvNet for the 2020s
Zhuang Liu
Hanzi Mao
Chaozheng Wu
Christoph Feichtenhofer
Trevor Darrell
Saining Xie
ViT
159
5,167
0
10 Jan 2022
High-Resolution Image Synthesis with Latent Diffusion Models
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
3DV
398
15,486
0
20 Dec 2021
Transparency of Deep Neural Networks for Medical Image Analysis: A
  Review of Interpretability Methods
Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods
Zohaib Salahuddin
Henry C. Woodruff
A. Chatterjee
Philippe Lambin
56
316
0
01 Nov 2021
Advances in adversarial attacks and defenses in computer vision: A
  survey
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Mian
Navid Kardan
M. Shah
AAML
60
240
0
01 Aug 2021
LoRA: Low-Rank Adaptation of Large Language Models
LoRA: Low-Rank Adaptation of Large Language Models
J. E. Hu
Yelong Shen
Phillip Wallis
Zeyuan Allen-Zhu
Yuanzhi Li
Shean Wang
Lu Wang
Weizhu Chen
OffRL
AI4TS
AI4CE
ALM
AIMat
393
10,301
0
17 Jun 2021
EfficientNetV2: Smaller Models and Faster Training
EfficientNetV2: Smaller Models and Faster Training
Mingxing Tan
Quoc V. Le
EgoV
119
2,696
0
01 Apr 2021
A review of deep learning in medical imaging: Imaging traits, technology
  trends, case studies with progress highlights, and future promises
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises
S. Kevin Zhou
H. Greenspan
Christos Davatzikos
James S. Duncan
Bram van Ginneken
A. Madabhushi
Jerry L. Prince
Daniel Rueckert
Ronald M. Summers
152
638
0
02 Aug 2020
Concept Bottleneck Models
Concept Bottleneck Models
Pang Wei Koh
Thao Nguyen
Y. S. Tang
Stephen Mussmann
Emma Pierson
Been Kim
Percy Liang
94
821
0
09 Jul 2020
CheXpert++: Approximating the CheXpert labeler for
  Speed,Differentiability, and Probabilistic Output
CheXpert++: Approximating the CheXpert labeler for Speed,Differentiability, and Probabilistic Output
Matthew B. A. McDermott
T. Hsu
W. Weng
Marzyeh Ghassemi
U. Toronto
70
32
0
26 Jun 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
569
18,008
0
19 Jun 2020
Skip Connections Matter: On the Transferability of Adversarial Examples
  Generated with ResNets
Skip Connections Matter: On the Transferability of Adversarial Examples Generated with ResNets
Dongxian Wu
Yisen Wang
Shutao Xia
James Bailey
Xingjun Ma
AAML
SILM
73
314
0
14 Feb 2020
Simple Black-box Adversarial Attacks
Simple Black-box Adversarial Attacks
Chuan Guo
Jacob R. Gardner
Yurong You
A. Wilson
Kilian Q. Weinberger
AAML
55
578
0
17 May 2019
MIMIC-CXR-JPG, a large publicly available database of labeled chest
  radiographs
MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs
Alistair E. W. Johnson
Tom Pollard
Nathaniel R. Greenbaum
M. Lungren
Chih-ying Deng
Yifan Peng
Zhiyong Lu
R. Mark
Seth Berkowitz
Steven Horng
MedIm
94
810
0
21 Jan 2019
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and
  Expert Comparison
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison
Jeremy Irvin
Pranav Rajpurkar
M. Ko
Yifan Yu
Silviana Ciurea-Ilcus
...
D. Larson
C. Langlotz
Bhavik Patel
M. Lungren
A. Ng
110
2,591
0
21 Jan 2019
An Interpretable Deep Hierarchical Semantic Convolutional Neural Network
  for Lung Nodule Malignancy Classification
An Interpretable Deep Hierarchical Semantic Convolutional Neural Network for Lung Nodule Malignancy Classification
Shiwen Shen
Simon X. Han
D. Aberle
Alex A. T. Bui
William Hsu
27
238
0
02 Jun 2018
Black-box Adversarial Attacks with Limited Queries and Information
Black-box Adversarial Attacks with Limited Queries and Information
Andrew Ilyas
Logan Engstrom
Anish Athalye
Jessy Lin
MLAU
AAML
163
1,200
0
23 Apr 2018
Adversarial Attacks Against Medical Deep Learning Systems
Adversarial Attacks Against Medical Deep Learning Systems
S. G. Finlayson
Hyung Won Chung
I. Kohane
Andrew L. Beam
SILM
AAML
OOD
MedIm
50
232
0
15 Apr 2018
NegBio: a high-performance tool for negation and uncertainty detection
  in radiology reports
NegBio: a high-performance tool for negation and uncertainty detection in radiology reports
Yifan Peng
Xiaosong Wang
Le Lu
M. Bagheri
Ronald M. Summers
Zhiyong Lu
MedIm
UQCV
40
199
0
16 Dec 2017
Interpretability Beyond Feature Attribution: Quantitative Testing with
  Concept Activation Vectors (TCAV)
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
211
1,838
0
30 Nov 2017
Mitigating Adversarial Effects Through Randomization
Mitigating Adversarial Effects Through Randomization
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Zhou Ren
Alan Yuille
AAML
113
1,058
0
06 Nov 2017
Countering Adversarial Images using Input Transformations
Countering Adversarial Images using Input Transformations
Chuan Guo
Mayank Rana
Moustapha Cissé
Laurens van der Maaten
AAML
109
1,404
0
31 Oct 2017
Dynamic Routing Between Capsules
Dynamic Routing Between Capsules
S. Sabour
Nicholas Frosst
Geoffrey E. Hinton
169
4,595
0
26 Oct 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
301
12,063
0
19 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,725
0
19 May 2017
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Zhuowen Tu
Kaiming He
509
10,318
0
16 Nov 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
764
36,781
0
25 Aug 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
534
5,897
0
08 Jul 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,954
0
16 Feb 2016
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN
  Architectures, Dataset Characteristics and Transfer Learning
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning
Hoo-Chang Shin
H. Roth
Mingchen Gao
Le Lu
Ziyue Xu
Isabella Nogues
Jianhua Yao
D. Mollura
Ronald M. Summers
72
4,604
0
10 Feb 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
250
9,308
0
14 Dec 2015
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,814
0
10 Dec 2015
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
148
4,895
0
14 Nov 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
271
19,045
0
20 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
268
14,912
1
21 Dec 2013
1