ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.02345
  4. Cited By
Optimal Subspace Inference for the Laplace Approximation of Bayesian Neural Networks

Optimal Subspace Inference for the Laplace Approximation of Bayesian Neural Networks

4 February 2025
Josua Faller
Jörg Martin
    BDL
ArXivPDFHTML

Papers citing "Optimal Subspace Inference for the Laplace Approximation of Bayesian Neural Networks"

16 / 16 papers shown
Title
Are you using test log-likelihood correctly?
Are you using test log-likelihood correctly?
Sameer K. Deshpande
Soumya K. Ghosh
Tin D. Nguyen
Tamara Broderick
62
7
0
01 Dec 2022
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
45
54
0
11 Nov 2022
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
194
312
0
28 Jun 2021
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
77
285
0
24 Feb 2020
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
62
144
0
17 Jul 2019
Quality of Uncertainty Quantification for Bayesian Neural Network
  Inference
Quality of Uncertainty Quantification for Bayesian Neural Network Inference
Jiayu Yao
Weiwei Pan
S. Ghosh
Finale Doshi-Velez
UQCV
BDL
164
113
0
24 Jun 2019
MNIST-C: A Robustness Benchmark for Computer Vision
MNIST-C: A Robustness Benchmark for Computer Vision
Norman Mu
Justin Gilmer
52
210
0
05 Jun 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
82
806
0
07 Feb 2019
Practical Gauss-Newton Optimisation for Deep Learning
Practical Gauss-Newton Optimisation for Deep Learning
Aleksandar Botev
H. Ritter
David Barber
ODL
49
231
0
12 Jun 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
342
4,700
0
15 Mar 2017
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
330
7,478
0
02 Dec 2016
Eigenvalues of the Hessian in Deep Learning: Singularity and Beyond
Eigenvalues of the Hessian in Deep Learning: Singularity and Beyond
Levent Sagun
Léon Bottou
Yann LeCun
UQCV
81
236
0
22 Nov 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.1K
193,426
0
10 Dec 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
212
1,510
0
08 Jun 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
114
944
0
18 Feb 2015
Revisiting Natural Gradient for Deep Networks
Revisiting Natural Gradient for Deep Networks
Razvan Pascanu
Yoshua Bengio
ODL
134
389
0
16 Jan 2013
1