ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.07294
  4. Cited By
Dataset-Agnostic Recommender Systems
v1v2 (latest)

Dataset-Agnostic Recommender Systems

13 January 2025
Tri Kurniawan Wijaya
Edoardo DÁmico
Xinyang Shao
ArXiv (abs)PDFHTML

Papers citing "Dataset-Agnostic Recommender Systems"

16 / 16 papers shown
Title
Universal Reusability in Recommender Systems: The Case for Dataset- and Task-Independent Frameworks
Universal Reusability in Recommender Systems: The Case for Dataset- and Task-Independent Frameworks
Tri Kurniawan Wijaya
Xinyang Shao
Gonzalo Fiz Pontiveros
Edoardo DÁmico
22
0
0
03 Jun 2025
Position: A Call to Action for a Human-Centered AutoML Paradigm
Position: A Call to Action for a Human-Centered AutoML Paradigm
Marius Lindauer
Florian Karl
A. Klier
Julia Moosbauer
Alexander Tornede
Andreas Mueller
Frank Hutter
Matthias Feurer
Bernd Bischl
92
8
0
05 Jun 2024
ERASE: Benchmarking Feature Selection Methods for Deep Recommender
  Systems
ERASE: Benchmarking Feature Selection Methods for Deep Recommender Systems
Pengyue Jia
Yejing Wang
Zhaochen Du
Xiangyu Zhao
Yichao Wang
Bo Chen
Wanyu Wang
Huifeng Guo
Ruiming Tang
74
9
0
19 Mar 2024
MM-GEF: Multi-modal representation meet collaborative filtering
MM-GEF: Multi-modal representation meet collaborative filtering
Hao Wu
Alejandro Ariza-Casabona
Bartlomiej Twardowski
Tri Kurniawan Wijaya
49
2
0
14 Aug 2023
LLaMA: Open and Efficient Foundation Language Models
LLaMA: Open and Efficient Foundation Language Models
Hugo Touvron
Thibaut Lavril
Gautier Izacard
Xavier Martinet
Marie-Anne Lachaux
...
Faisal Azhar
Aurelien Rodriguez
Armand Joulin
Edouard Grave
Guillaume Lample
ALMPILM
1.6K
13,533
0
27 Feb 2023
Toward Efficient Automated Feature Engineering
Toward Efficient Automated Feature Engineering
Kafeng Wang
Pengyang Wang
Chengzhong Xu
105
2
0
26 Dec 2022
OpenFE: Automated Feature Generation with Expert-level Performance
OpenFE: Automated Feature Generation with Expert-level Performance
Tianze Zhang
Zheyu Zhang
Zhiyuan Fan
Haoyan Luo
Feng Liu
Qian Liu
Wei Cao
Jian Li
VLM
47
30
0
22 Nov 2022
Online Meta-Learning for Model Update Aggregation in Federated Learning
  for Click-Through Rate Prediction
Online Meta-Learning for Model Update Aggregation in Federated Learning for Click-Through Rate Prediction
Xianghang Liu
Bartlomiej Twardowski
Tri Kurniawan Wijaya
FedML
72
2
0
30 Aug 2022
Click-Through Rate Prediction in Online Advertising: A Literature Review
Click-Through Rate Prediction in Online Advertising: A Literature Review
Yanwu Yang
Panyu Zhai
CML3DV
118
100
0
22 Feb 2022
On Hyperparameter Optimization of Machine Learning Algorithms: Theory
  and Practice
On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice
Li Yang
Abdallah Shami
AI4CE
218
2,152
0
30 Jul 2020
AutoRec: An Automated Recommender System
AutoRec: An Automated Recommender System
Ting-Hsiang Wang
Qingquan Song
Xiaotian Han
Zirui Liu
Haifeng Jin
Helen Zhou
77
21
0
26 Jun 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
1.0K
42,651
0
28 May 2020
A Troubling Analysis of Reproducibility and Progress in Recommender
  Systems Research
A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research
Maurizio Ferrari Dacrema
Simone Boglio
Paolo Cremonesi
Dietmar Jannach
82
198
0
18 Nov 2019
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
  Transformer
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
Colin Raffel
Noam M. Shazeer
Adam Roberts
Katherine Lee
Sharan Narang
Michael Matena
Yanqi Zhou
Wei Li
Peter J. Liu
AIMat
602
20,418
0
23 Oct 2019
AutoML: A Survey of the State-of-the-Art
AutoML: A Survey of the State-of-the-Art
Xin He
Kaiyong Zhao
Xiaowen Chu
182
1,478
0
02 Aug 2019
Are We Really Making Much Progress? A Worrying Analysis of Recent Neural
  Recommendation Approaches
Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches
Maurizio Ferrari Dacrema
Paolo Cremonesi
Dietmar Jannach
57
591
0
16 Jul 2019
1