Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2412.11569
Cited By
v1
v2
v3
v4 (latest)
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
16 December 2024
Filippo Bigi
Marcel F. Langer
Michele Ceriotti
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The dark side of the forces: assessing non-conservative force models for atomistic machine learning"
22 / 22 papers shown
Title
FlashMD: long-stride, universal prediction of molecular dynamics
Filippo Bigi
Sanggyu Chong
Agustinus Kristiadi
Michele Ceriotti
AI4CE
87
1
0
25 May 2025
How simple can you go? An off-the-shelf transformer approach to molecular dynamics
Max Eissler
Tim Korjakow
Stefan Ganscha
Oliver T. Unke
Klaus-Robert Müller
Stefan Gugler
130
2
0
03 Mar 2025
The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains
Eric Qu
Aditi S. Krishnapriyan
LRM
69
14
0
31 Oct 2024
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
Luis Barroso-Luque
Muhammed Shuaibi
Xiang Fu
Brandon M. Wood
Misko Dzamba
Meng Gao
Ammar Rizvi
C. L. Zitnick
Zachary W. Ulissi
AI4CE
PINN
101
22
0
16 Oct 2024
Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning
Yuxuan Ren
Dihan Zheng
Chang-Shu Liu
Peiran Jin
Yu Shi
Lin Huang
Jiyan He
Shengjie Luo
Tao Qin
Tie-Yan Liu
AI4CE
120
2
0
14 Oct 2024
Probing the effects of broken symmetries in machine learning
Marcel F. Langer
Sergey Pozdnyakov
Michele Ceriotti
AI4CE
85
10
0
25 Jun 2024
Protein Conformation Generation via Force-Guided SE(3) Diffusion Models
Yan Wang
Lihao Wang
Yuning Shen
Yiqun Wang
Huizhuo Yuan
Yue Wu
Quanquan Gu
DiffM
102
34
0
21 Mar 2024
A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems
Alexandre Duval
Simon Mathis
Chaitanya K. Joshi
Victor Schmidt
Santiago Miret
Fragkiskos D. Malliaros
Taco S. Cohen
Pietro Lio
Yoshua Bengio
Michael M. Bronstein
3DV
AI4CE
184
69
0
12 Dec 2023
Revisiting Data Augmentation for Rotational Invariance in Convolutional Neural Networks
F. Quiroga
Franco Ronchetti
Laura Lanzarini
A. F. Bariviera
64
36
0
12 Oct 2023
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations
Yidong Liao
Brandon M. Wood
Abhishek Das
Tess E. Smidt
146
159
0
21 Jun 2023
Smooth, exact rotational symmetrization for deep learning on point clouds
Sergey Pozdnyakov
Michele Ceriotti
3DPC
100
30
0
30 May 2023
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Peter K. Eastman
P. Behara
David L. Dotson
Raimondas Galvelis
John E. Herr
...
J. Chodera
Benjamin P. Pritchard
Yuanqing Wang
Gianni De Fabritiis
T. Markland
128
113
0
21 Sep 2022
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts
Richard Tran
Janice Lan
Muhammed Shuaibi
Brandon M. Wood
Siddharth Goyal
...
Jehad Abed
Oleksandr Voznyy
Edward H. Sargent
Zachary W. Ulissi
C. L. Zitnick
142
186
0
17 Jun 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
99
507
0
15 Jun 2022
Unified theory of atom-centered representations and message-passing machine-learning schemes
Jigyasa Nigam
Sergey Pozdnyakov
Guillaume Fraux
Michele Ceriotti
AI4CE
46
36
0
03 Feb 2022
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
86
136
0
11 Jun 2021
GemNet: Universal Directional Graph Neural Networks for Molecules
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
183
465
0
02 Jun 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
343
1,340
0
08 Jan 2021
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
331
540
0
20 Oct 2020
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
154
940
0
14 Oct 2020
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CE
GNN
1.2K
5,605
0
20 Dec 2018
Machine Learning of coarse-grained Molecular Dynamics Force Fields
Jiang Wang
Simon Olsson
C. Wehmeyer
Adria Pérez
Nicholas E. Charron
Gianni De Fabritiis
Frank Noe
C. Clementi
AI4CE
86
407
0
04 Dec 2018
1