ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.09558
  4. Cited By
Adaptive Deviation Learning for Visual Anomaly Detection with Data
  Contamination

Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination

14 November 2024
Anindya Sundar Das
Guansong Pang
M. Bhuyan
ArXiv (abs)PDFHTML

Papers citing "Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination"

20 / 20 papers shown
Title
DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly
  Detection
DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection
Xuan Zhang
Shiyu Li
Xi Li
Ping Huang
Jiulong Shan
Ting Chen
67
136
0
21 Nov 2022
SPot-the-Difference Self-Supervised Pre-training for Anomaly Detection
  and Segmentation
SPot-the-Difference Self-Supervised Pre-training for Anomaly Detection and Segmentation
Yang Zou
Jongheon Jeong
Latha Pemula
Dongqing Zhang
Onkar Dabeer
95
310
0
28 Jul 2022
Constrained Instance and Class Reweighting for Robust Learning under
  Label Noise
Constrained Instance and Class Reweighting for Robust Learning under Label Noise
Abhishek Kumar
Ehsan Amid
NoLa
57
20
0
09 Nov 2021
Explainable Deep Few-shot Anomaly Detection with Deviation Networks
Explainable Deep Few-shot Anomaly Detection with Deviation Networks
Guansong Pang
Choubo Ding
Chunhua Shen
Anton Van Den Hengel
96
88
0
01 Aug 2021
Towards Total Recall in Industrial Anomaly Detection
Towards Total Recall in Industrial Anomaly Detection
Karsten Roth
Latha Pemula
J. Zepeda
Bernhard Schölkopf
Thomas Brox
Peter V. Gehler
UQCV
88
922
0
15 Jun 2021
Inpainting Transformer for Anomaly Detection
Inpainting Transformer for Anomaly Detection
Jonathan Pirnay
K. Chai
ViT
178
168
0
28 Apr 2021
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
  Localization
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization
Thomas Defard
Aleksandr Setkov
Angélique Loesch
Romaric Audigier
UQCV
79
848
0
17 Nov 2020
Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation
Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation
Jihun Yi
Sungroh Yoon
153
385
0
29 Jun 2020
Normalized Loss Functions for Deep Learning with Noisy Labels
Normalized Loss Functions for Deep Learning with Noisy Labels
Xingjun Ma
Hanxun Huang
Yisen Wang
Simone Romano
S. Erfani
James Bailey
NoLa
76
445
0
24 Jun 2020
Modeling the Distribution of Normal Data in Pre-Trained Deep Features
  for Anomaly Detection
Modeling the Distribution of Normal Data in Pre-Trained Deep Features for Anomaly Detection
Oliver Rippel
Patrick Mertens
Dorit Merhof
133
240
0
28 May 2020
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
624
4,809
0
13 May 2019
Unsupervised Label Noise Modeling and Loss Correction
Unsupervised Label Noise Modeling and Loss Correction
Eric Arazo Sanchez
Diego Ortego
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
94
616
0
25 Apr 2019
OCGAN: One-class Novelty Detection Using GANs with Constrained Latent
  Representations
OCGAN: One-class Novelty Detection Using GANs with Constrained Latent Representations
Pramuditha Perera
Ramesh Nallapati
Bing Xiang
121
526
0
20 Mar 2019
Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder
  Anomaly Detection
Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder Anomaly Detection
S. Akçay
Amir Atapour-Abarghouei
T. Breckon
UQCV
100
381
0
25 Jan 2019
Deep Anomaly Detection with Outlier Exposure
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
183
1,487
0
11 Dec 2018
q-Space Novelty Detection with Variational Autoencoders
q-Space Novelty Detection with Variational Autoencoders
A. Vasilev
Vladimir Golkov
Marc Meissner
I. Lipp
Eleonora Sgarlata
V. Tomassini
Derek K. Jones
Daniel Cremers
DRL
55
59
0
08 Jun 2018
Unsupervised Representation Learning by Predicting Image Rotations
Unsupervised Representation Learning by Predicting Image Rotations
Spyros Gidaris
Praveer Singh
N. Komodakis
OODSSLDRL
264
3,300
0
21 Mar 2018
Improved Regularization of Convolutional Neural Networks with Cutout
Improved Regularization of Convolutional Neural Networks with Cutout
Terrance Devries
Graham W. Taylor
135
3,775
0
15 Aug 2017
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DVBDL
886
27,427
0
02 Dec 2015
Describing Textures in the Wild
Describing Textures in the Wild
Mircea Cimpoi
Subhransu Maji
Iasonas Kokkinos
S. Mohamed
Andrea Vedaldi
3DV
146
2,693
0
14 Nov 2013
1