ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.00278
  4. Cited By
KAN-AD: Time Series Anomaly Detection with Kolmogorov-Arnold Networks
v1v2v3 (latest)

KAN-AD: Time Series Anomaly Detection with Kolmogorov-Arnold Networks

1 November 2024
Quan Zhou
Changhua Pei
Fei Sun
Jing Han
Zhengwei Gao
Dan Pei
Haiming Zhang
Gaogang Xie
Jianhui Li
    AI4TS
ArXiv (abs)PDFHTML

Papers citing "KAN-AD: Time Series Anomaly Detection with Kolmogorov-Arnold Networks"

23 / 23 papers shown
Title
Exploring Adversarial Transferability between Kolmogorov-arnold Networks
Exploring Adversarial Transferability between Kolmogorov-arnold Networks
Songping Wang
Xinquan Yue
Yueming Lyu
Caifeng Shan
AAML
138
2
0
08 Mar 2025
Low Tensor-Rank Adaptation of Kolmogorov--Arnold Networks
Low Tensor-Rank Adaptation of Kolmogorov--Arnold Networks
Yihang Gao
Michael K. Ng
Vincent Y. F. Tan
260
0
0
17 Feb 2025
MatrixKAN: Parallelized Kolmogorov-Arnold Network
MatrixKAN: Parallelized Kolmogorov-Arnold Network
Cale Coffman
Lizhong Chen
120
1
0
11 Feb 2025
KAN 2.0: Kolmogorov-Arnold Networks Meet Science
KAN 2.0: Kolmogorov-Arnold Networks Meet Science
Ziming Liu
Pingchuan Ma
Yixuan Wang
Wojciech Matusik
Max Tegmark
134
76
0
19 Aug 2024
KAN or MLP: A Fairer Comparison
KAN or MLP: A Fairer Comparison
Runpeng Yu
Weihao Yu
Xinchao Wang
133
58
0
23 Jul 2024
A Comprehensive Survey on Kolmogorov Arnold Networks (KAN)
A Comprehensive Survey on Kolmogorov Arnold Networks (KAN)
Yuntian Hou
Di zhang
AI4CE
146
33
0
13 Jul 2024
Revisiting VAE for Unsupervised Time Series Anomaly Detection: A
  Frequency Perspective
Revisiting VAE for Unsupervised Time Series Anomaly Detection: A Frequency Perspective
Zexin Wang
Changhua Pei
Minghua Ma
Xin Wang
Zhihan Li
...
Dongmei Zhang
Qingwei Lin
Haiming Zhang
Jianhui Li
Gaogang Xie
AI4TS
100
36
0
05 Feb 2024
Unraveling the "Anomaly" in Time Series Anomaly Detection: A
  Self-supervised Tri-domain Solution
Unraveling the "Anomaly" in Time Series Anomaly Detection: A Self-supervised Tri-domain Solution
Yuting Sun
Guansong Pang
Guanhua Ye
Tong Chen
Xia Hu
Hongzhi Yin
126
10
0
19 Nov 2023
FITS: Modeling Time Series with $10k$ Parameters
FITS: Modeling Time Series with 10k10k10k Parameters
Zhijian Xu
Ailing Zeng
Qiang Xu
AI4TS
107
105
0
06 Jul 2023
One Fits All:Power General Time Series Analysis by Pretrained LM
One Fits All:Power General Time Series Analysis by Pretrained LM
Tian Zhou
Peisong Niu
Xue Wang
Liang Sun
Rong Jin
AI4TS
206
446
0
23 Feb 2023
TimesNet: Temporal 2D-Variation Modeling for General Time Series
  Analysis
TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis
Haixu Wu
Teng Hu
Yong Liu
Hang Zhou
Jianmin Wang
Mingsheng Long
AI4TSAIFin
160
854
0
05 Oct 2022
Local Evaluation of Time Series Anomaly Detection Algorithms
Local Evaluation of Time Series Anomaly Detection Algorithms
Alexis Huet
J. M. Navarro
Dario Rossi
AI4TS
101
72
0
27 Jun 2022
Anomaly Transformer: Time Series Anomaly Detection with Association
  Discrepancy
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy
Jiehui Xu
Haixu Wu
Jianmin Wang
Mingsheng Long
AI4TS
166
516
0
06 Oct 2021
Current Time Series Anomaly Detection Benchmarks are Flawed and are
  Creating the Illusion of Progress
Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion of Progress
R. Wu
Eamonn J. Keogh
AI4TS
103
203
0
29 Sep 2020
Time-Series Anomaly Detection Service at Microsoft
Time-Series Anomaly Detection Service at Microsoft
Hansheng Ren
Bixiong Xu
Yujing Wang
Chao Yi
Congrui Huang
Xiaoyu Kou
Tony Xing
Mao Yang
Jie Tong
Qi Zhang
AI4TS
93
509
0
10 Jun 2019
MAD-GAN: Multivariate Anomaly Detection for Time Series Data with
  Generative Adversarial Networks
MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks
Dan Li
Dacheng Chen
Lei Shi
Baihong Jin
Jonathan Goh
See-Kiong Ng
94
789
0
15 Jan 2019
Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic
  Thresholding
Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding
K. Hundman
V. Constantinou
Christopher Laporte
Ian Colwell
T. Söderström
AI4TS
197
1,279
0
13 Feb 2018
Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal
  KPIs in Web Applications
Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications
Haowen Xu
Wenxiao Chen
Nengwen Zhao
Zeyan Li
Jiahao Bu
...
Dan Pei
Yang Feng
Jie Chen
Zhaogang Wang
Honglin Qiao
MLAU
118
826
0
12 Feb 2018
LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection
LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection
Pankaj Malhotra
Anusha Ramakrishnan
G. Anand
Lovekesh Vig
Puneet Agarwal
Gautam M. Shroff
AI4TS
201
964
0
01 Jul 2016
Gaussian Error Linear Units (GELUs)
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
223
5,079
0
27 Jun 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.9K
195,462
0
10 Dec 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
1.1K
43,429
0
11 Feb 2015
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
668
43,820
0
17 Sep 2014
1