ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.00278
182
4
v1v2v3 (latest)

KAN-AD: Time Series Anomaly Detection with Kolmogorov-Arnold Networks

1 November 2024
Quan Zhou
Changhua Pei
Fei Sun
Jing Han
Zhengwei Gao
Dan Pei
Haiming Zhang
Gaogang Xie
Jianhui Li
    AI4TS
ArXiv (abs)PDFHTML
Main:9 Pages
10 Figures
Bibliography:3 Pages
6 Tables
Appendix:2 Pages
Abstract

Time series anomaly detection (TSAD) underpins real-time monitoring in cloud services and web systems, allowing rapid identification of anomalies to prevent costly failures. Most TSAD methods driven by forecasting models tend to overfit by emphasizing minor fluctuations. Our analysis reveals that effective TSAD should focus on modeling "normal" behavior through smooth local patterns. To achieve this, we reformulate time series modeling as approximating the series with smooth univariate functions. The local smoothness of each univariate function ensures that the fitted time series remains resilient against local disturbances. However, a direct KAN implementation proves susceptible to these disturbances due to the inherently localized characteristics of B-spline functions. We thus propose KAN-AD, replacing B-splines with truncated Fourier expansions and introducing a novel lightweight learning mechanism that emphasizes global patterns while staying robust to local disturbances. On four popular TSAD benchmarks, KAN-AD achieves an average 15% improvement in detection accuracy (with peaks exceeding 27%) over state-of-the-art baselines. Remarkably, it requires fewer than 1,000 trainable parameters, resulting in a 50% faster inference speed compared to the original KAN, demonstrating the approach's efficiency and practical viability.

View on arXiv
Comments on this paper