Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.21869
Cited By
v1
v2
v3 (latest)
Cross-Entropy Is All You Need To Invert the Data Generating Process
29 October 2024
Patrik Reizinger
Alice Bizeul
Attila Juhos
Julia E. Vogt
Randall Balestriero
Wieland Brendel
David Klindt
SSL
OOD
BDL
DRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Cross-Entropy Is All You Need To Invert the Data Generating Process"
50 / 53 papers shown
Title
When Does Closeness in Distribution Imply Representational Similarity? An Identifiability Perspective
Beatrix M. G. Nielsen
Emanuele Marconato
Andrea Dittadi
Luigi Gresele
58
0
0
04 Jun 2025
Connecting Neural Models Latent Geometries with Relative Geodesic Representations
Hanlin Yu
Berfin Inal
Georgios Arvanitidis
Soren Hauberg
Francesco Locatello
Marco Fumero
DRL
72
1
0
02 Jun 2025
The Origins of Representation Manifolds in Large Language Models
Alexander Modell
Patrick Rubin-Delanchy
N. Whiteley
MILM
AI4CE
33
0
0
23 May 2025
Position: An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Patrik Reizinger
Randall Balestriero
David Klindt
Wieland Brendel
199
1
0
17 Apr 2025
Mind the Gap: Bridging the Divide Between AI Aspirations and the Reality of Autonomous Characterization
Grace Guinan
Addison Salvador
Michelle A. Smeaton
Andrew Glaws
Hilary Egan
Brian C. Wyatt
Babak Anasori
K. Fiedler
M. Olszta
Steven Spurgeon
124
0
0
25 Feb 2025
Formation of Representations in Neural Networks
Liu Ziyin
Isaac Chuang
Tomer Galanti
T. Poggio
247
7
0
03 Oct 2024
InfoNCE: Identifying the Gap Between Theory and Practice
E. Rusak
Patrik Reizinger
Attila Juhos
Oliver Bringmann
Roland S. Zimmermann
Wieland Brendel
133
11
0
28 Jun 2024
Occam's Razor for Self Supervised Learning: What is Sufficient to Learn Good Representations?
Mark Ibrahim
David Klindt
Randall Balestriero
SSL
130
5
1
15 Jun 2024
The Platonic Representation Hypothesis
Minyoung Huh
Brian Cheung
Tongzhou Wang
Phillip Isola
138
142
0
13 May 2024
The Linear Representation Hypothesis and the Geometry of Large Language Models
Kiho Park
Yo Joong Choe
Victor Veitch
LLMSV
MILM
176
190
0
07 Nov 2023
Identifiable Contrastive Learning with Automatic Feature Importance Discovery
Qi Zhang
Yifei Wang
Yisen Wang
72
13
0
29 Oct 2023
Leveraging sparse and shared feature activations for disentangled representation learning
Marco Fumero
F. Wenzel
Luca Zancato
Alessandro Achille
Emanuele Rodolà
Stefano Soatto
Bernhard Schölkopf
Francesco Locatello
OOD
DRL
95
25
0
17 Apr 2023
On the Stepwise Nature of Self-Supervised Learning
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
96
35
0
27 Mar 2023
Identifiability of latent-variable and structural-equation models: from linear to nonlinear
Aapo Hyvarinen
Ilyes Khemakhem
R. Monti
CML
113
46
0
06 Feb 2023
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning
Sébastien Lachapelle
T. Deleu
Divyat Mahajan
Ioannis Mitliagkas
Yoshua Bengio
Simon Lacoste-Julien
Quentin Bertrand
78
34
0
26 Nov 2022
ImageNet-X: Understanding Model Mistakes with Factor of Variation Annotations
Badr Youbi Idrissi
Diane Bouchacourt
Randall Balestriero
Ivan Evtimov
C. Hazirbas
Nicolas Ballas
Pascal Vincent
M. Drozdzal
David Lopez-Paz
Mark Ibrahim
VLM
ViT
101
46
0
03 Nov 2022
Disentanglement of Correlated Factors via Hausdorff Factorized Support
Karsten Roth
Mark Ibrahim
Zeynep Akata
Pascal Vincent
Diane Bouchacourt
CML
OOD
CoGe
106
34
0
13 Oct 2022
Relative representations enable zero-shot latent space communication
Luca Moschella
Valentino Maiorca
Marco Fumero
Antonio Norelli
Francesco Locatello
Emanuele Rodolà
118
109
0
30 Sep 2022
A Non-isotropic Probabilistic Take on Proxy-based Deep Metric Learning
Michael Kirchhof
Karsten Roth
Zeynep Akata
Enkelejda Kasneci
97
13
0
08 Jul 2022
Guillotine Regularization: Why removing layers is needed to improve generalization in Self-Supervised Learning
Florian Bordes
Randall Balestriero
Q. Garrido
Adrien Bardes
Pascal Vincent
121
24
0
27 Jun 2022
Contrastive and Non-Contrastive Self-Supervised Learning Recover Global and Local Spectral Embedding Methods
Randall Balestriero
Yann LeCun
SSL
112
135
0
23 May 2022
Towards efficient representation identification in supervised learning
Kartik Ahuja
Divyat Mahajan
Vasilis Syrgkanis
Ioannis Mitliagkas
CoGe
OOD
DRL
93
19
0
10 Apr 2022
Beyond Separability: Analyzing the Linear Transferability of Contrastive Representations to Related Subpopulations
Jeff Z. HaoChen
Colin Wei
Ananya Kumar
Tengyu Ma
77
39
0
06 Apr 2022
Chaos is a Ladder: A New Theoretical Understanding of Contrastive Learning via Augmentation Overlap
Yifei Wang
Qi Zhang
Yisen Wang
Jiansheng Yang
Zhouchen Lin
72
102
0
25 Mar 2022
Understanding Dimensional Collapse in Contrastive Self-supervised Learning
Li Jing
Pascal Vincent
Yann LeCun
Yuandong Tian
SSL
124
359
0
18 Oct 2021
Disentangling Identifiable Features from Noisy Data with Structured Nonlinear ICA
Hermanni Hälvä
Sylvain Le Corff
Luc Lehéricy
Jonathan So
Yongjie Zhu
Elisabeth Gassiat
Aapo Hyvarinen
CML
69
65
0
17 Jun 2021
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
376
223
0
17 Feb 2021
Addressing the Topological Defects of Disentanglement via Distributed Operators
Diane Bouchacourt
Mark Ibrahim
Stéphane Deny
38
22
0
10 Feb 2021
Causal Inference from Slowly Varying Nonstationary Processes
Kang Du
Yu Xiang
121
6
0
23 Dec 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
146
134
0
21 Jul 2020
On Linear Identifiability of Learned Representations
Geoffrey Roeder
Luke Metz
Diederik P. Kingma
CML
74
85
0
01 Jul 2020
Disentangling by Subspace Diffusion
David Pfau
I. Higgins
Aleksandar Botev
S. Racanière
DiffM
DRL
79
37
0
23 Jun 2020
Independent Innovation Analysis for Nonlinear Vector Autoregressive Process
H. Morioka
Hermanni Hälvä
Aapo Hyvarinen
123
22
0
19 Jun 2020
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
231
2,071
0
16 Apr 2020
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
431
18,975
0
13 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
276
321
0
07 Feb 2020
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
101
599
0
10 Jul 2019
The Incomplete Rosetta Stone Problem: Identifiability Results for Multi-View Nonlinear ICA
Luigi Gresele
Paul Kishan Rubenstein
Arash Mehrjou
Francesco Locatello
Bernhard Schölkopf
57
100
0
16 May 2019
Analytical Methods for Interpretable Ultradense Word Embeddings
Philipp Dufter
Hinrich Schütze
70
25
0
18 Apr 2019
Analogies Explained: Towards Understanding Word Embeddings
Carl Allen
Timothy M. Hospedales
94
144
0
28 Jan 2019
Towards a Definition of Disentangled Representations
I. Higgins
David Amos
David Pfau
S. Racanière
Loic Matthey
Danilo Jimenez Rezende
Alexander Lerchner
OCL
DRL
139
480
0
05 Dec 2018
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
166
1,475
0
29 Nov 2018
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
213
2,680
0
29 Nov 2018
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning
Aapo Hyvarinen
Hiroaki Sasaki
Richard Turner
OOD
CML
129
331
0
22 May 2018
Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination
Zhirong Wu
Yuanjun Xiong
Stella X. Yu
Dahua Lin
SSL
196
3,475
0
05 May 2018
Deep Learning is Robust to Massive Label Noise
David Rolnick
Andreas Veit
Serge J. Belongie
Nir Shavit
NoLa
110
558
0
30 May 2017
Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA
Aapo Hyvarinen
H. Morioka
CML
OOD
AI4TS
79
410
0
20 May 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.5K
195,053
0
10 Dec 2015
Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks
Alexey Dosovitskiy
Philipp Fischer
Jost Tobias Springenberg
Martin Riedmiller
Thomas Brox
OOD
SSL
163
1,026
0
26 Jun 2014
Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov
Ilya Sutskever
Kai Chen
G. Corrado
J. Dean
NAI
OCL
429
33,605
0
16 Oct 2013
1
2
Next