Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.20072
Cited By
CGKN: A Deep Learning Framework for Modeling Complex Dynamical Systems and Efficient Data Assimilation
26 October 2024
Chuanqi Chen
Nan Chen
Yinling Zhang
Jin-Long Wu
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"CGKN: A Deep Learning Framework for Modeling Complex Dynamical Systems and Efficient Data Assimilation"
26 / 26 papers shown
Title
Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator
Xinghao Dong
Chuanqi Chen
Jin-Long Wu
DiffM
AI4CE
61
5
0
06 Aug 2024
Limits and Powers of Koopman Learning
Matthew J. Colbrook
Igor Mezić
Alexei Stepanenko
49
10
0
08 Jul 2024
CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation
Chuanqi Chen
Nan Chen
Jin-Long Wu
AI4CE
57
4
0
10 Apr 2024
Learning About Structural Errors in Models of Complex Dynamical Systems
Jin-Long Wu
Matthew E. Levine
Tapio Schneider
Andrew M. Stuart
AI4CE
59
17
0
29 Dec 2023
PyKoopman: A Python Package for Data-Driven Approximation of the Koopman Operator
Shaowu Pan
E. Kaiser
Brian M. de Silva
J. Nathan Kutz
Steven L. Brunton
48
8
0
22 Jun 2023
CEBoosting: Online Sparse Identification of Dynamical Systems with Regime Switching by Causation Entropy Boosting
Chuanqi Chen
Nan Chen
Jin-Long Wu
55
9
0
16 Apr 2023
Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review
Sibo Cheng
César Quilodrán-Casas
Said Ouala
A. Farchi
Che Liu
...
Weiping Ding
Yike Guo
A. Carrassi
Marc Bocquet
Rossella Arcucci
AI4CE
51
128
0
18 Mar 2023
Online model error correction with neural networks in the incremental 4D-Var framework
A. Farchi
M. Chrust
Marc Bocquet
P. Laloyaux
Massimo Bonavita
89
20
0
25 Oct 2022
A Causality-Based Learning Approach for Discovering the Underlying Dynamics of Complex Systems from Partial Observations with Stochastic Parameterization
Nan Chen
Yinling Zhang
CML
45
15
0
19 Aug 2022
Conditional Gaussian Nonlinear System: a Fast Preconditioner and a Cheap Surrogate Model For Complex Nonlinear Systems
N. Chen
Yingda Li
Honghu Liu
42
17
0
09 Dec 2021
Combining machine learning and data assimilation to forecast dynamical systems from noisy partial observations
Georg Gottwald
Sebastian Reich
AI4CE
57
38
0
08 Aug 2021
State, global and local parameter estimation using local ensemble Kalman filters: applications to online machine learning of chaotic dynamics
Quentin Malartic
A. Farchi
Marc Bocquet
56
19
0
23 Jul 2021
A comparison of combined data assimilation and machine learning methods for offline and online model error correction
A. Farchi
Marc Bocquet
P. Laloyaux
Massimo Bonavita
Quentin Malartic
OffRL
49
36
0
23 Jul 2021
KalmanNet: Neural Network Aided Kalman Filtering for Partially Known Dynamics
Guy Revach
Nir Shlezinger
Xiaoyong Ni
Adrià López Escoriza
Ruud J. G. van Sloun
Yonina C. Eldar
43
273
0
21 Jul 2021
Modern Koopman Theory for Dynamical Systems
Steven L. Brunton
M. Budišić
E. Kaiser
J. Nathan Kutz
AI4CE
81
411
0
24 Feb 2021
Using Data Assimilation to Train a Hybrid Forecast System that Combines Machine-Learning and Knowledge-Based Components
Alexander Wikner
Jaideep Pathak
Brian R. Hunt
I. Szunyogh
M. Girvan
Edward Ott
14
37
0
15 Feb 2021
Data Assimilation Networks
Pierre Boudier
Anthony Fillion
Serge Gratton
S. Gürol
Sixin Zhang
AI4CE
35
11
0
19 Oct 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
367
2,355
0
18 Oct 2020
ERFit: Entropic Regression Fit Matlab Package, for Data-Driven System Identification of Underlying Dynamic Equations
A. AlMomani
Erik Bollt
8
7
0
06 Oct 2020
Online learning of both state and dynamics using ensemble Kalman filters
Marc Bocquet
A. Farchi
Quentin Malartic
39
28
0
06 Jun 2020
Learning Stochastic Closures Using Ensemble Kalman Inversion
T. Schneider
Andrew M. Stuart
Jin-Long Wu
49
40
0
17 Apr 2020
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
118
2,082
0
08 Oct 2019
Machine Learning for Stochastic Parameterization: Generative Adversarial Networks in the Lorenz '96 Model
D. Gagne
H. Christensen
A. Subramanian
A. Monahan
AI4CE
BDL
92
141
0
10 Sep 2019
Physics-Informed Probabilistic Learning of Linear Embeddings of Non-linear Dynamics With Guaranteed Stability
Shaowu Pan
Karthik Duraisamy
45
137
0
09 Jun 2019
Deep learning to represent sub-grid processes in climate models
S. Rasp
Michael S. Pritchard
Pierre Gentine
AI4Cl
AI4CE
27
727
0
12 Jun 2018
Theory-guided Data Science: A New Paradigm for Scientific Discovery from Data
Anuj Karpatne
G. Atluri
James H. Faghmous
M. Steinbach
A. Banerjee
A. Ganguly
Shashi Shekhar
N. Samatova
Vipin Kumar
AI4CE
31
978
0
27 Dec 2016
1