ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.09694
17
10

Data Assimilation Networks

19 October 2020
Pierre Boudier
Anthony Fillion
Serge Gratton
S. Gürol
Sixin Zhang
    AI4CE
ArXivPDFHTML
Abstract

Data assimilation (DA) aims at forecasting the state of a dynamical system by combining a mathematical representation of the system with noisy observations taking into account their uncertainties. State of the art methods are based on the Gaussian error statistics and the linearization of the non-linear dynamics which may lead to sub-optimal methods. In this respect, there are still open questions how to improve these methods. In this paper, we propose a fully data driven deep learning architecture generalizing recurrent Elman networks and data assimilation algorithms which approximate a sequence of prior and posterior densities conditioned on noisy observations. By construction our approach can be used for general nonlinear dynamics and non-Gaussian densities. On numerical experiments based on the well-known Lorenz-95 system and with Gaussian error statistics, our architecture achieves comparable performance to EnKF on both the analysis and the propagation of probability density functions of the system state at a given time without using any explicit regularization technique.

View on arXiv
Comments on this paper