Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.19941
Cited By
Privacy without Noisy Gradients: Slicing Mechanism for Generative Model Training
25 October 2024
Kristjan Greenewald
Yuancheng Yu
Hao Wang
Kai Xu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Privacy without Noisy Gradients: Slicing Mechanism for Generative Model Training"
19 / 19 papers shown
Title
Learning with Differentially Private (Sliced) Wasserstein Gradients
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
65
0
0
03 Feb 2025
Privacy-preserving data release leveraging optimal transport and particle gradient descent
Konstantin Donhauser
Javier Abad
Neha Hulkund
Fanny Yang
66
4
0
31 Jan 2024
Private GANs, Revisited
Alex Bie
Gautam Kamath
Guojun Zhang
67
14
0
06 Feb 2023
Private Synthetic Data for Multitask Learning and Marginal Queries
G. Vietri
Cédric Archambeau
Sergul Aydore
William Brown
Michael Kearns
Aaron Roth
Ankit Siva
Shuai Tang
Zhiwei Steven Wu
SyDa
53
29
0
15 Sep 2022
Benchmarking Differentially Private Synthetic Data Generation Algorithms
Yuchao Tao
Ryan McKenna
Michael Hay
Ashwin Machanavajjhala
G. Miklau
SyDa
47
83
0
16 Dec 2021
Don't Generate Me: Training Differentially Private Generative Models with Sinkhorn Divergence
Tianshi Cao
Alex Bie
Arash Vahdat
Sanja Fidler
Karsten Kreis
SyDa
DiffM
46
71
0
01 Nov 2021
Winning the NIST Contest: A scalable and general approach to differentially private synthetic data
Ryan McKenna
G. Miklau
Daniel Sheldon
SyDa
24
119
0
11 Aug 2021
Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods
Terrance Liu
G. Vietri
Zhiwei Steven Wu
SyDa
40
61
0
14 Jun 2021
Polynomial methods in statistical inference: theory and practice
Yihong Wu
Pengkun Yang
11
15
0
15 Apr 2021
Differentially Private Query Release Through Adaptive Projection
Sergul Aydore
William Brown
Michael Kearns
K. Kenthapadi
Luca Melis
Aaron Roth
Ankit Siva
62
64
0
11 Mar 2021
New Oracle-Efficient Algorithms for Private Synthetic Data Release
G. Vietri
Grace Tian
Mark Bun
Thomas Steinke
Zhiwei Steven Wu
SyDa
138
76
0
10 Jul 2020
GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators
Dingfan Chen
Tribhuvanesh Orekondy
Mario Fritz
SyDa
32
183
0
15 Jun 2020
DP-CGAN: Differentially Private Synthetic Data and Label Generation
Reihaneh Torkzadehmahani
Peter Kairouz
B. Paten
SyDa
32
236
0
27 Jan 2020
Gaussian-Smooth Optimal Transport: Metric Structure and Statistical Efficiency
Ziv Goldfeld
Kristjan Greenewald
OT
40
41
0
24 Jan 2020
Sliced Gromov-Wasserstein
Titouan Vayer
Rémi Flamary
Romain Tavenard
Laetitia Chapel
Nicolas Courty
OT
25
100
0
24 May 2019
Graphical-model based estimation and inference for differential privacy
Ryan McKenna
Daniel Sheldon
G. Miklau
42
140
0
26 Jan 2019
Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences
Borja Balle
Gilles Barthe
Marco Gaboardi
59
382
0
04 Jul 2018
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
84
1,648
0
02 Jun 2016
On Sampling, Anonymization, and Differential Privacy: Or, k-Anonymization Meets Differential Privacy
Ninghui Li
Wahbeh H. Qardaji
D. Su
60
277
0
13 Jan 2011
1