ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.19449
  4. Cited By
Learned Reference-based Diffusion Sampling for multi-modal distributions
v1v2v3 (latest)

Learned Reference-based Diffusion Sampling for multi-modal distributions

25 October 2024
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
    DiffM
ArXiv (abs)PDFHTML

Papers citing "Learned Reference-based Diffusion Sampling for multi-modal distributions"

46 / 46 papers shown
Title
Improving the evaluation of samplers on multi-modal targets
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
436
0
0
11 Apr 2025
End-To-End Learning of Gaussian Mixture Priors for Diffusion Sampler
Denis Blessing
Xiaogang Jia
Gerhard Neumann
DiffM
90
1
0
01 Mar 2025
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for
  Sampling
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
101
26
0
11 Jun 2024
Stochastic Localization via Iterative Posterior Sampling
Stochastic Localization via Iterative Posterior Sampling
Louis Grenioux
Maxence Noble
Marylou Gabrié
Alain Durmus
DiffM
76
16
0
16 Feb 2024
Target Score Matching
Target Score Matching
Valentin De Bortoli
M. Hutchinson
Peter Wirnsberger
Arnaud Doucet
DiffM
76
20
0
13 Feb 2024
Particle Denoising Diffusion Sampler
Particle Denoising Diffusion Sampler
Angus Phillips
Hai-Dang Dau
M. Hutchinson
Valentin De Bortoli
George Deligiannidis
Arnaud Doucet
DiffM
103
30
0
09 Feb 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
74
57
0
09 Feb 2024
Faster Sampling without Isoperimetry via Diffusion-based Monte Carlo
Faster Sampling without Isoperimetry via Diffusion-based Monte Carlo
Xunpeng Huang
Difan Zou
Hanze Dong
Yian Ma
Tong Zhang
DiffM
52
12
0
12 Jan 2024
Learning Energy-Based Models by Cooperative Diffusion Recovery
  Likelihood
Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood
Y. Zhu
Jianwen Xie
Yingnian Wu
Ruiqi Gao
DiffM
101
14
0
10 Sep 2023
Reverse Diffusion Monte Carlo
Reverse Diffusion Monte Carlo
Xunpeng Huang
Hanze Dong
Yi Hao
Yi-An Ma
Tong Zhang
DiffM
70
28
0
05 Jul 2023
Improved sampling via learned diffusions
Improved sampling via learned diffusions
Lorenz Richter
Julius Berner
DiffM
94
63
0
03 Jul 2023
Persistently Trained, Diffusion-assisted Energy-based Models
Persistently Trained, Diffusion-assisted Energy-based Models
Xinwei Zhang
Z. Tan
Zhijian Ou
DiffM
64
2
0
21 Apr 2023
Denoising Diffusion Samplers
Denoising Diffusion Samplers
Francisco Vargas
Will Grathwohl
Arnaud Doucet
DiffM
56
89
0
27 Feb 2023
On Sampling with Approximate Transport Maps
On Sampling with Approximate Transport Maps
Louis Grenioux
Alain Durmus
Eric Moulines
Marylou Gabrié
OT
31
17
0
09 Feb 2023
An optimal control perspective on diffusion-based generative modeling
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
127
94
0
02 Nov 2022
Denoising MCMC for Accelerating Diffusion-Based Generative Models
Denoising MCMC for Accelerating Diffusion-Based Generative Models
Beomsu Kim
Jong Chul Ye
DiffM
76
15
0
29 Sep 2022
A Unified Perspective on Natural Gradient Variational Inference with
  Gaussian Mixture Models
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
Oleg Arenz
Philipp Dahlinger
Zihan Ye
Michael Volpp
Gerhard Neumann
97
17
0
23 Sep 2022
Langevin Diffusion Variational Inference
Langevin Diffusion Variational Inference
Tomas Geffner
Justin Domke
DiffM
44
24
0
16 Aug 2022
Score-Based Diffusion meets Annealed Importance Sampling
Score-Based Diffusion meets Annealed Importance Sampling
Arnaud Doucet
Will Grathwohl
A. G. Matthews
Heiko Strathmann
DiffM
91
46
0
16 Aug 2022
Flow Annealed Importance Sampling Bootstrap
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
102
94
0
03 Aug 2022
Elucidating the Design Space of Diffusion-Based Generative Models
Elucidating the Design Space of Diffusion-Based Generative Models
Tero Karras
M. Aittala
Timo Aila
S. Laine
DiffM
215
2,022
0
01 Jun 2022
Continual Repeated Annealed Flow Transport Monte Carlo
Continual Repeated Annealed Flow Transport Monte Carlo
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
94
53
0
31 Jan 2022
Path Integral Sampler: a stochastic control approach for sampling
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
100
117
0
30 Nov 2021
Bayesian Learning via Neural Schrödinger-Föllmer Flows
Bayesian Learning via Neural Schrödinger-Föllmer Flows
Francisco Vargas
Andrius Ovsianas
David Fernandes
Mark Girolami
Neil D. Lawrence
Nikolas Nusken
BDL
87
49
0
20 Nov 2021
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
Tomas Geffner
Justin Domke
75
36
0
08 Jul 2021
Variational Refinement for Importance Sampling Using the Forward
  Kullback-Leibler Divergence
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi-An Ma
Michael I. Jordan
BDL
125
40
0
30 Jun 2021
Diffusion Models Beat GANs on Image Synthesis
Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal
Alex Nichol
265
7,938
0
11 May 2021
Improved Denoising Diffusion Probabilistic Models
Improved Denoising Diffusion Probabilistic Models
Alex Nichol
Prafulla Dhariwal
DiffM
352
3,715
0
18 Feb 2021
Annealed Flow Transport Monte Carlo
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
83
78
0
15 Feb 2021
Learning Energy-Based Models by Diffusion Recovery Likelihood
Learning Energy-Based Models by Diffusion Recovery Likelihood
Ruiqi Gao
Yang Song
Ben Poole
Ying Nian Wu
Diederik P. Kingma
DiffM
64
128
0
15 Dec 2020
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
353
6,566
0
26 Nov 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
689
18,310
0
19 Jun 2020
Improved Techniques for Training Score-Based Generative Models
Improved Techniques for Training Score-Based Generative Models
Yang Song
Stefano Ermon
DiffM
260
1,163
0
16 Jun 2020
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural
  networks: perspectives from the theory of controlled diffusions and measures
  on path space
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
Nikolas Nusken
Lorenz Richter
AI4CE
71
111
0
11 May 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
131
185
0
16 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
209
1,713
0
05 Dec 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDaDiffM
258
3,956
0
12 Jul 2019
Non-Reversible Parallel Tempering: a Scalable Highly Parallel MCMC
  Scheme
Non-Reversible Parallel Tempering: a Scalable Highly Parallel MCMC Scheme
Saifuddin Syed
Alexandre Bouchard-Côté
George Deligiannidis
Arnaud Doucet
72
73
0
08 May 2019
Theoretical guarantees for sampling and inference in generative models
  with latent diffusions
Theoretical guarantees for sampling and inference in generative models with latent diffusions
Belinda Tzen
Maxim Raginsky
DiffM
66
101
0
05 Mar 2019
A Framework for Adaptive MCMC Targeting Multimodal Distributions
A Framework for Adaptive MCMC Targeting Multimodal Distributions
E. Pompe
Chris Holmes
K. Latuszyñski
78
59
0
06 Dec 2018
Weight-Preserving Simulated Tempering
Weight-Preserving Simulated Tempering
Nicholas G. Tawn
Gareth O. Roberts
Jeffrey S. Rosenthal
65
28
0
14 Aug 2018
Non-asymptotic convergence analysis for the Unadjusted Langevin
  Algorithm
Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
69
415
0
17 Jul 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDaDiffM
306
7,016
0
12 Mar 2015
Theoretical guarantees for approximate sampling from smooth and
  log-concave densities
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
83
516
0
23 Dec 2014
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
292
3,282
0
09 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
171
4,309
0
18 Nov 2011
1