Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.19449
Cited By
v1
v2
v3 (latest)
Learned Reference-based Diffusion Sampling for multi-modal distributions
25 October 2024
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learned Reference-based Diffusion Sampling for multi-modal distributions"
46 / 46 papers shown
Title
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
436
0
0
11 Apr 2025
End-To-End Learning of Gaussian Mixture Priors for Diffusion Sampler
Denis Blessing
Xiaogang Jia
Gerhard Neumann
DiffM
90
1
0
01 Mar 2025
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
101
26
0
11 Jun 2024
Stochastic Localization via Iterative Posterior Sampling
Louis Grenioux
Maxence Noble
Marylou Gabrié
Alain Durmus
DiffM
76
16
0
16 Feb 2024
Target Score Matching
Valentin De Bortoli
M. Hutchinson
Peter Wirnsberger
Arnaud Doucet
DiffM
76
20
0
13 Feb 2024
Particle Denoising Diffusion Sampler
Angus Phillips
Hai-Dang Dau
M. Hutchinson
Valentin De Bortoli
George Deligiannidis
Arnaud Doucet
DiffM
103
30
0
09 Feb 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
74
57
0
09 Feb 2024
Faster Sampling without Isoperimetry via Diffusion-based Monte Carlo
Xunpeng Huang
Difan Zou
Hanze Dong
Yian Ma
Tong Zhang
DiffM
52
12
0
12 Jan 2024
Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood
Y. Zhu
Jianwen Xie
Yingnian Wu
Ruiqi Gao
DiffM
101
14
0
10 Sep 2023
Reverse Diffusion Monte Carlo
Xunpeng Huang
Hanze Dong
Yi Hao
Yi-An Ma
Tong Zhang
DiffM
70
28
0
05 Jul 2023
Improved sampling via learned diffusions
Lorenz Richter
Julius Berner
DiffM
94
63
0
03 Jul 2023
Persistently Trained, Diffusion-assisted Energy-based Models
Xinwei Zhang
Z. Tan
Zhijian Ou
DiffM
64
2
0
21 Apr 2023
Denoising Diffusion Samplers
Francisco Vargas
Will Grathwohl
Arnaud Doucet
DiffM
56
89
0
27 Feb 2023
On Sampling with Approximate Transport Maps
Louis Grenioux
Alain Durmus
Eric Moulines
Marylou Gabrié
OT
31
17
0
09 Feb 2023
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
127
94
0
02 Nov 2022
Denoising MCMC for Accelerating Diffusion-Based Generative Models
Beomsu Kim
Jong Chul Ye
DiffM
76
15
0
29 Sep 2022
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
Oleg Arenz
Philipp Dahlinger
Zihan Ye
Michael Volpp
Gerhard Neumann
97
17
0
23 Sep 2022
Langevin Diffusion Variational Inference
Tomas Geffner
Justin Domke
DiffM
44
24
0
16 Aug 2022
Score-Based Diffusion meets Annealed Importance Sampling
Arnaud Doucet
Will Grathwohl
A. G. Matthews
Heiko Strathmann
DiffM
91
46
0
16 Aug 2022
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
102
94
0
03 Aug 2022
Elucidating the Design Space of Diffusion-Based Generative Models
Tero Karras
M. Aittala
Timo Aila
S. Laine
DiffM
215
2,022
0
01 Jun 2022
Continual Repeated Annealed Flow Transport Monte Carlo
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
94
53
0
31 Jan 2022
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
100
117
0
30 Nov 2021
Bayesian Learning via Neural Schrödinger-Föllmer Flows
Francisco Vargas
Andrius Ovsianas
David Fernandes
Mark Girolami
Neil D. Lawrence
Nikolas Nusken
BDL
87
49
0
20 Nov 2021
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
Tomas Geffner
Justin Domke
75
36
0
08 Jul 2021
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi-An Ma
Michael I. Jordan
BDL
125
40
0
30 Jun 2021
Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal
Alex Nichol
265
7,938
0
11 May 2021
Improved Denoising Diffusion Probabilistic Models
Alex Nichol
Prafulla Dhariwal
DiffM
352
3,715
0
18 Feb 2021
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
83
78
0
15 Feb 2021
Learning Energy-Based Models by Diffusion Recovery Likelihood
Ruiqi Gao
Yang Song
Ben Poole
Ying Nian Wu
Diederik P. Kingma
DiffM
64
128
0
15 Dec 2020
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
353
6,566
0
26 Nov 2020
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
689
18,310
0
19 Jun 2020
Improved Techniques for Training Score-Based Generative Models
Yang Song
Stefano Ermon
DiffM
260
1,163
0
16 Jun 2020
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
Nikolas Nusken
Lorenz Richter
AI4CE
71
111
0
11 May 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
131
185
0
16 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
209
1,713
0
05 Dec 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
258
3,956
0
12 Jul 2019
Non-Reversible Parallel Tempering: a Scalable Highly Parallel MCMC Scheme
Saifuddin Syed
Alexandre Bouchard-Côté
George Deligiannidis
Arnaud Doucet
72
73
0
08 May 2019
Theoretical guarantees for sampling and inference in generative models with latent diffusions
Belinda Tzen
Maxim Raginsky
DiffM
66
101
0
05 Mar 2019
A Framework for Adaptive MCMC Targeting Multimodal Distributions
E. Pompe
Chris Holmes
K. Latuszyñski
78
59
0
06 Dec 2018
Weight-Preserving Simulated Tempering
Nicholas G. Tawn
Gareth O. Roberts
Jeffrey S. Rosenthal
65
28
0
14 Aug 2018
Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
69
415
0
17 Jul 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
306
7,016
0
12 Mar 2015
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
83
516
0
23 Dec 2014
MCMC using Hamiltonian dynamics
Radford M. Neal
292
3,282
0
09 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
171
4,309
0
18 Nov 2011
1