ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.16608
  4. Cited By
Assessing and improving reliability of neighbor embedding methods: a map-continuity perspective
v1v2 (latest)

Assessing and improving reliability of neighbor embedding methods: a map-continuity perspective

22 October 2024
Zhexuan Liu
Rong Ma
Yiqiao Zhong
ArXiv (abs)PDFHTML

Papers citing "Assessing and improving reliability of neighbor embedding methods: a map-continuity perspective"

19 / 19 papers shown
Title
Pattern or Artifact? Interactively Exploring Embedding Quality with
  TRACE
Pattern or Artifact? Interactively Exploring Embedding Quality with TRACE
Edith Heiter
L. Martens
R. Seurinck
M. Guilliams
Tijl De Bie
Yvan Saeys
Jefrey Lijffijt
66
1
0
18 Jun 2024
Inductive Global and Local Manifold Approximation and Projection
Inductive Global and Local Manifold Approximation and Projection
Jungeum Kim
Tianlin Li
67
1
0
12 Jun 2024
Kernel PCA for Out-of-Distribution Detection
Kernel PCA for Out-of-Distribution Detection
Kun Fang
Qinghua Tao
Kexin Lv
Mingzhen He
Xiaolin Huang
Jie Yang
OODD
98
4
0
05 Feb 2024
A Probabilistic Graph Coupling View of Dimension Reduction
A Probabilistic Graph Coupling View of Dimension Reduction
Hugues van Assel
T. Espinasse
J. Chiquet
F. Picard
50
14
0
31 Jan 2022
Generalized Out-of-Distribution Detection: A Survey
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
289
935
0
21 Oct 2021
Theoretical Foundations of t-SNE for Visualizing High-Dimensional
  Clustered Data
Theoretical Foundations of t-SNE for Visualizing High-Dimensional Clustered Data
T. Tony Cai
Rong Ma
47
113
0
16 May 2021
Minimum-Distortion Embedding
Minimum-Distortion Embedding
Akshay Agrawal
Alnur Ali
Stephen P. Boyd
55
59
0
03 Mar 2021
t-SNE, Forceful Colorings and Mean Field Limits
t-SNE, Forceful Colorings and Mean Field Limits
Yulan Zhang
Stefan Steinerberger
43
12
0
25 Feb 2021
WILDS: A Benchmark of in-the-Wild Distribution Shifts
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
194
1,445
0
14 Dec 2020
Understanding How Dimension Reduction Tools Work: An Empirical Approach
  to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Yingfan Wang
Haiyang Huang
Cynthia Rudin
Yaron Shaposhnik
219
315
0
08 Dec 2020
Confounding variables can degrade generalization performance of
  radiological deep learning models
Confounding variables can degrade generalization performance of radiological deep learning models
J. Zech
Marcus A. Badgeley
Manway Liu
A. Costa
J. Titano
Eric K. Oermann
OOD
85
1,179
0
02 Jul 2018
An Analysis of the t-SNE Algorithm for Data Visualization
An Analysis of the t-SNE Algorithm for Data Visualization
Sanjeev Arora
Wei Hu
Pravesh Kothari
66
153
0
05 Mar 2018
UMAP: Uniform Manifold Approximation and Projection for Dimension
  Reduction
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
Leland McInnes
John Healy
James Melville
195
9,460
0
09 Feb 2018
Efficient Algorithms for t-distributed Stochastic Neighborhood Embedding
Efficient Algorithms for t-distributed Stochastic Neighborhood Embedding
G. Linderman
M. Rachh
J. Hoskins
Stefan Steinerberger
Y. Kluger
71
436
0
25 Dec 2017
Clustering with t-SNE, provably
Clustering with t-SNE, provably
G. Linderman
Stefan Steinerberger
78
229
0
08 Jun 2017
Stochastic Neighbor Embedding separates well-separated clusters
Stochastic Neighbor Embedding separates well-separated clusters
Uri Shaham
Stefan Steinerberger
OTDRL
60
24
0
09 Feb 2017
Visualizing Large-scale and High-dimensional Data
Visualizing Large-scale and High-dimensional Data
Jian Tang
J. Liu
Ming Zhang
Qiaozhu Mei
AI4TS
75
381
0
01 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,322
0
10 Dec 2015
Describing Textures in the Wild
Describing Textures in the Wild
Mircea Cimpoi
Subhransu Maji
Iasonas Kokkinos
S. Mohamed
Andrea Vedaldi
3DV
141
2,686
0
14 Nov 2013
1