ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.15721
  4. Cited By
Learning signals defined on graphs with optimal transport and Gaussian process regression

Learning signals defined on graphs with optimal transport and Gaussian process regression

21 October 2024
Raphael Carpintero Perez
Sébastien da Veiga
Josselin Garnier
B. Staber
ArXivPDFHTML

Papers citing "Learning signals defined on graphs with optimal transport and Gaussian process regression"

32 / 32 papers shown
Title
Bayesian neural networks for predicting uncertainty in full-field
  material response
Bayesian neural networks for predicting uncertainty in full-field material response
G. Pasparakis
Lori Graham-Brady
Michael D. Shields
AI4CE
69
4
0
21 Jun 2024
Gaussian process regression with Sliced Wasserstein Weisfeiler-Lehman
  graph kernels
Gaussian process regression with Sliced Wasserstein Weisfeiler-Lehman graph kernels
Raphael Carpintero Perez
Sébastien da Veiga
Josselin Garnier
B. Staber
60
4
0
06 Feb 2024
Conformal Approach To Gaussian Process Surrogate Evaluation With
  Coverage Guarantees
Conformal Approach To Gaussian Process Surrogate Evaluation With Coverage Guarantees
Edgar Jaber
Vincent Blot
Nicolas Brunel
V. Chabridon
Emmanuel Remy
Bertrand Iooss
Didier Lucor
Mathilde Mougeot
Alessandro Leite
60
8
0
15 Jan 2024
Recent Advances in Optimal Transport for Machine Learning
Recent Advances in Optimal Transport for Machine Learning
Eduardo Fernandes Montesuma
Fred-Maurice Ngole-Mboula
Antoine Souloumiac
OOD
OT
37
34
0
28 Jun 2023
MMGP: a Mesh Morphing Gaussian Process-based machine learning method for
  regression of physical problems under non-parameterized geometrical
  variability
MMGP: a Mesh Morphing Gaussian Process-based machine learning method for regression of physical problems under non-parameterized geometrical variability
F. Casenave
B. Staber
Xavier Roynard
AI4CE
53
15
0
22 May 2023
Gaussian Processes on Distributions based on Regularized Optimal
  Transport
Gaussian Processes on Distributions based on Regularized Optimal Transport
François Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
GP
OT
51
8
0
12 Oct 2022
Fourier Neural Operator with Learned Deformations for PDEs on General
  Geometries
Fourier Neural Operator with Learned Deformations for PDEs on General Geometries
Zong-Yi Li
Daniel Zhengyu Huang
Burigede Liu
Anima Anandkumar
AI4CE
142
264
0
11 Jul 2022
Template based Graph Neural Network with Optimal Transport Distances
Template based Graph Neural Network with Optimal Transport Distances
Cédric Vincent-Cuaz
Rémi Flamary
Marco Corneli
Titouan Vayer
Nicolas Courty
OT
60
20
0
31 May 2022
Sign and Basis Invariant Networks for Spectral Graph Representation
  Learning
Sign and Basis Invariant Networks for Spectral Graph Representation Learning
Derek Lim
Joshua Robinson
Lingxiao Zhao
Tess E. Smidt
S. Sra
Haggai Maron
Stefanie Jegelka
63
143
0
25 Feb 2022
A survey of unsupervised learning methods for high-dimensional
  uncertainty quantification in black-box-type problems
A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems
Katiana Kontolati
Dimitrios Loukrezis
D. D. Giovanis
Lohit Vandanapu
Michael D. Shields
40
41
0
09 Feb 2022
Optimal Transport Tools (OTT): A JAX Toolbox for all things Wasserstein
Optimal Transport Tools (OTT): A JAX Toolbox for all things Wasserstein
Marco Cuturi
Laetitia Meng-Papaxanthos
Yingtao Tian
Charlotte Bunne
Geoff Davis
O. Teboul
OT
165
98
0
28 Jan 2022
Accurate Point Cloud Registration with Robust Optimal Transport
Accurate Point Cloud Registration with Robust Optimal Transport
Zhengyang Shen
Jean Feydy
Peirong Liu
A. Curiale
R. S. J. Estépar
Raúl San José Estépar
Marc Niethammer
3DPC
OOD
OT
25
53
0
01 Nov 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
382
2,355
0
18 Oct 2020
Learning Mesh-Based Simulation with Graph Networks
Learning Mesh-Based Simulation with Graph Networks
Tobias Pfaff
Meire Fortunato
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
AI4CE
41
761
0
07 Oct 2020
Metrics for Benchmarking and Uncertainty Quantification: Quality,
  Applicability, and a Path to Best Practices for Machine Learning in Chemistry
Metrics for Benchmarking and Uncertainty Quantification: Quality, Applicability, and a Path to Best Practices for Machine Learning in Chemistry
G. Vishwakarma
Aditya Sonpal
J. Hachmann
72
48
0
30 Sep 2020
Graph signal processing for machine learning: A review and new
  perspectives
Graph signal processing for machine learning: A review and new perspectives
Xiaowen Dong
D. Thanou
Laura Toni
M. Bronstein
P. Frossard
38
157
0
31 Jul 2020
Gaussian Processes on Graphs via Spectral Kernel Learning
Gaussian Processes on Graphs via Spectral Kernel Learning
Yin-Cong Zhi
Yin Cheng Ng
Xiaowen Dong
17
32
0
12 Jun 2020
Wasserstein Weisfeiler-Lehman Graph Kernels
Wasserstein Weisfeiler-Lehman Graph Kernels
Matteo Togninalli
M. Ghisu
Felipe Llinares-López
Bastian Rieck
Karsten Borgwardt
50
196
0
04 Jun 2019
Graph Kernels: A Survey
Graph Kernels: A Survey
Giannis Nikolentzos
Giannis Siglidis
Michalis Vazirgiannis
98
123
0
27 Apr 2019
A Survey on Graph Kernels
A Survey on Graph Kernels
Nils M. Kriege
Fredrik D. Johansson
Christopher Morris
107
416
0
28 Mar 2019
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
339
3,101
0
04 Jun 2018
Optimal Transport for structured data with application on graphs
Optimal Transport for structured data with application on graphs
Titouan Vayer
Laetitia Chapel
Rémi Flamary
R. Tavenard
Nicolas Courty
OT
48
270
0
23 May 2018
Gaussian Processes Over Graphs
Gaussian Processes Over Graphs
Arun Venkitaraman
Saikat Chatterjee
P. Händel
25
39
0
15 Mar 2018
Joint Distribution Optimal Transportation for Domain Adaptation
Joint Distribution Optimal Transportation for Domain Adaptation
Nicolas Courty
Rémi Flamary
Amaury Habrard
A. Rakotomamonjy
OT
OOD
66
561
0
24 May 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
239
7,388
0
04 Apr 2017
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
400
28,795
0
09 Sep 2016
Operator-valued Kernels for Learning from Functional Response Data
Operator-valued Kernels for Learning from Functional Response Data
Hachem Kadri
E. Duflos
Philippe Preux
S. Canu
A. Rakotomamonjy
Julien Audiffren
46
128
0
28 Oct 2015
Optimal Transport for Domain Adaptation
Optimal Transport for Domain Adaptation
Nicolas Courty
Rémi Flamary
D. Tuia
A. Rakotomamonjy
OT
OOD
53
1,112
0
02 Jul 2015
The Emerging Field of Signal Processing on Graphs: Extending
  High-Dimensional Data Analysis to Networks and Other Irregular Domains
The Emerging Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains
D. Shuman
S. K. Narang
P. Frossard
Antonio Ortega
P. Vandergheynst
84
3,962
0
31 Oct 2012
Equivalence of distance-based and RKHS-based statistics in hypothesis
  testing
Equivalence of distance-based and RKHS-based statistics in hypothesis testing
Dino Sejdinovic
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
103
681
0
25 Jul 2012
A Generalized Kernel Approach to Structured Output Learning
A Generalized Kernel Approach to Structured Output Learning
Hachem Kadri
Mohammad Ghavamzadeh
Philippe Preux
87
37
0
10 May 2012
Kernels for Vector-Valued Functions: a Review
Kernels for Vector-Valued Functions: a Review
Mauricio A. Alvarez
Lorenzo Rosasco
Neil D. Lawrence
GP
102
918
0
30 Jun 2011
1