ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.11933
  4. Cited By
Beyond Sequence: Impact of Geometric Context for RNA Property Prediction

Beyond Sequence: Impact of Geometric Context for RNA Property Prediction

15 October 2024
Junjie Xu
Artem Moskalev
Tommaso Mansi
Mangal Prakash
Rui Liao
    AI4CE
ArXivPDFHTML

Papers citing "Beyond Sequence: Impact of Geometric Context for RNA Property Prediction"

34 / 34 papers shown
Title
Geometric Hyena Networks for Large-scale Equivariant Learning
Geometric Hyena Networks for Large-scale Equivariant Learning
Artem Moskalev
Mangal Prakash
Junjie Xu
Tianyu Cui
Rui Liao
Tommaso Mansi
26
1
0
28 May 2025
A Comprehensive Benchmark for RNA 3D Structure-Function Modeling
A Comprehensive Benchmark for RNA 3D Structure-Function Modeling
Luis Wyss
Vincent Mallet
Wissam Karroucha
Karsten Borgwardt
Carlos Oliver
68
0
0
27 Mar 2025
HELM: Hierarchical Encoding for mRNA Language Modeling
HELM: Hierarchical Encoding for mRNA Language Modeling
Mehdi Yazdani-Jahromi
Mangal Prakash
Tommaso Mansi
Artem Moskalev
Rui Liao
119
3
0
13 Mar 2025
Specialized Foundation Models Struggle to Beat Supervised Baselines
Specialized Foundation Models Struggle to Beat Supervised Baselines
Zongzhe Xu
Ritvik Gupta
Wenduo Cheng
Alexander Shen
Junhong Shen
Ameet Talwalkar
M. Khodak
AI4CE
83
8
0
05 Nov 2024
Are High-Degree Representations Really Unnecessary in Equivariant Graph
  Neural Networks?
Are High-Degree Representations Really Unnecessary in Equivariant Graph Neural Networks?
Jiacheng Cen
Anyi Li
Ning Lin
Yuxiang Ren
Zihe Wang
Wenbing Huang
76
4
0
15 Oct 2024
SE(3)-Hyena Operator for Scalable Equivariant Learning
SE(3)-Hyena Operator for Scalable Equivariant Learning
Artem Moskalev
Mangal Prakash
Rui Liao
Tommaso Mansi
72
2
0
01 Jul 2024
RiNALMo: General-Purpose RNA Language Models Can Generalize Well on
  Structure Prediction Tasks
RiNALMo: General-Purpose RNA Language Models Can Generalize Well on Structure Prediction Tasks
Rafael Josip Penić
Tin Vlasic
Roland G. Huber
Yue Wan
M. Šikić
AI4CE
34
31
0
29 Feb 2024
Shape-aware Graph Spectral Learning
Shape-aware Graph Spectral Learning
Junjie Xu
Enyan Dai
Dongsheng Luo
Xiang Zhang
Suhang Wang
50
3
0
16 Oct 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
67
60
0
28 Apr 2023
A Survey on Spectral Graph Neural Networks
A Survey on Spectral Graph Neural Networks
Deyu Bo
Xiao Wang
Yang Liu
Yuan Fang
Yawen Li
Chuan Shi
66
27
0
11 Feb 2023
On the Expressive Power of Geometric Graph Neural Networks
On the Expressive Power of Geometric Graph Neural Networks
Chaitanya K. Joshi
Cristian Bodnar
Simon Mathis
Taco Cohen
Pietro Liò
76
90
0
23 Jan 2023
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast
  and Accurate Force Fields
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
66
476
0
15 Jun 2022
KPGT: Knowledge-Guided Pre-training of Graph Transformer for Molecular
  Property Prediction
KPGT: Knowledge-Guided Pre-training of Graph Transformer for Molecular Property Prediction
Han Li
Dan Zhao
Jianyang Zeng
43
64
0
02 Jun 2022
Probabilistic Transformer: Modelling Ambiguities and Distributions for
  RNA Folding and Molecule Design
Probabilistic Transformer: Modelling Ambiguities and Distributions for RNA Folding and Molecule Design
Jörg Franke
Frederic Runge
Frank Hutter
41
14
0
27 May 2022
Recipe for a General, Powerful, Scalable Graph Transformer
Recipe for a General, Powerful, Scalable Graph Transformer
Ladislav Rampášek
Mikhail Galkin
Vijay Prakash Dwivedi
Anh Tuan Luu
Guy Wolf
Dominique Beaini
106
563
0
25 May 2022
How Powerful are Spectral Graph Neural Networks
How Powerful are Spectral Graph Neural Networks
Xiyuan Wang
Muhan Zhang
99
195
0
23 May 2022
Deep learning models for predicting RNA degradation via dual
  crowdsourcing
Deep learning models for predicting RNA degradation via dual crowdsourcing
H. Wayment-Steele
W. Kladwang
Andrew Watkins
Do Soon Kim
Bojan Tunguz
...
Emin Öztürk
K. Amer
Mohamed Fares
Eterna Participants
Rhiju Das
42
19
0
14 Oct 2021
E(n) Equivariant Graph Neural Networks
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
83
1,015
0
19 Feb 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
275
1,283
0
08 Jan 2021
Masked Label Prediction: Unified Message Passing Model for
  Semi-Supervised Classification
Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification
Yunsheng Shi
Zhengjie Huang
Shikun Feng
Hui Zhong
Wenjin Wang
Yu Sun
AI4CE
73
780
0
08 Sep 2020
Learning from Protein Structure with Geometric Vector Perceptrons
Learning from Protein Structure with Geometric Vector Perceptrons
Bowen Jing
Stephan Eismann
Patricia Suriana
Raphael J. L. Townshend
R. Dror
GNN
3DV
62
480
0
03 Sep 2020
Directional Message Passing for Molecular Graphs
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
114
869
0
06 Mar 2020
RNA Secondary Structure Prediction By Learning Unrolled Algorithms
RNA Secondary Structure Prediction By Learning Unrolled Algorithms
Xinshi Chen
Yu Li
Ramzan Umarov
Xin Gao
Le Song
SyDa
AI4TS
44
118
0
13 Feb 2020
SMILES Transformer: Pre-trained Molecular Fingerprint for Low Data Drug
  Discovery
SMILES Transformer: Pre-trained Molecular Fingerprint for Low Data Drug Discovery
Shion Honda
Shoi Shi
H. Ueda
MedIm
65
174
0
12 Nov 2019
Optuna: A Next-generation Hyperparameter Optimization Framework
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
541
5,769
0
25 Jul 2019
Fast Graph Representation Learning with PyTorch Geometric
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DH
GNN
3DPC
200
4,334
0
06 Mar 2019
Spectral Multigraph Networks for Discovering and Fusing Relationships in
  Molecules
Spectral Multigraph Networks for Discovering and Fusing Relationships in Molecules
Boris Knyazev
Xiao Lin
Mohamed R. Amer
Graham W. Taylor
GNN
47
31
0
23 Nov 2018
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
216
7,623
0
01 Oct 2018
Tensor field networks: Rotation- and translation-equivariant neural
  networks for 3D point clouds
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
82
966
0
22 Feb 2018
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
428
20,089
0
30 Oct 2017
SchNet: A continuous-filter convolutional neural network for modeling
  quantum interactions
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
137
1,074
0
26 Jun 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
636
130,942
0
12 Jun 2017
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
579
28,999
0
09 Sep 2016
Convolutional Neural Networks on Graphs with Fast Localized Spectral
  Filtering
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M. Defferrard
Xavier Bresson
P. Vandergheynst
GNN
312
7,646
0
30 Jun 2016
1