ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.08524
  4. Cited By
IGNN-Solver: A Graph Neural Solver for Implicit Graph Neural Networks
v1v2 (latest)

IGNN-Solver: A Graph Neural Solver for Implicit Graph Neural Networks

11 October 2024
Junchao Lin
Zenan Ling
Zhanbo Feng
Feng Zhou
Jingwen Xu
Feng Zhou
Tianqi Hou
Zhenyu Liao
Robert C. Qiu
    GNNAI4CE
ArXiv (abs)PDFHTML

Papers citing "IGNN-Solver: A Graph Neural Solver for Implicit Graph Neural Networks"

49 / 49 papers shown
Title
Deep Equilibrium Models are Almost Equivalent to Not-so-deep Explicit
  Models for High-dimensional Gaussian Mixtures
Deep Equilibrium Models are Almost Equivalent to Not-so-deep Explicit Models for High-dimensional Gaussian Mixtures
Zenan Ling
Longbo Li
Zhanbo Feng
Yixuan Zhang
Feng Zhou
Robert C. Qiu
Zhenyu Liao
75
4
0
05 Feb 2024
Rethinking Graph Lottery Tickets: Graph Sparsity Matters
Rethinking Graph Lottery Tickets: Graph Sparsity Matters
Bo Hui
Jocelyn M Mora
Adrian Dalca
I. Aganj
81
23
0
03 May 2023
Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
  Networks
Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural Networks
Shuai Zhang
Ming Wang
Pin-Yu Chen
Sijia Liu
Songtao Lu
Miaoyuan Liu
MLT
85
17
0
06 Feb 2023
An Implicit GNN Solver for Poisson-like problems
An Implicit GNN Solver for Poisson-like problems
Matthieu Nastorg
M. Bucci
T. Faney
J. Gratien
Guillaume Charpiat
Marc Schoenauer
AI4CE
79
2
0
06 Feb 2023
MGNNI: Multiscale Graph Neural Networks with Implicit Layers
MGNNI: Multiscale Graph Neural Networks with Implicit Layers
Juncheng Liu
Bryan Hooi
Kenji Kawaguchi
X. Xiao
AI4CE
62
21
0
15 Oct 2022
Optimization-Induced Graph Implicit Nonlinear Diffusion
Optimization-Induced Graph Implicit Nonlinear Diffusion
Qi Chen
Yifei Wang
Yisen Wang
Jiansheng Yang
Zhouchen Lin
DiffM
112
32
0
29 Jun 2022
Principle of Relevant Information for Graph Sparsification
Principle of Relevant Information for Graph Sparsification
Shujian Yu
Francesco Alesiani
Wenzhe Yin
Robert Jenssen
José C. Príncipe
62
10
0
31 May 2022
Global Convergence of Over-parameterized Deep Equilibrium Models
Global Convergence of Over-parameterized Deep Equilibrium Models
Zenan Ling
Xingyu Xie
Qiuhao Wang
Zongpeng Zhang
Zhouchen Lin
91
12
0
27 May 2022
EIGNN: Efficient Infinite-Depth Graph Neural Networks
EIGNN: Efficient Infinite-Depth Graph Neural Networks
Juncheng Liu
Kenji Kawaguchi
Bryan Hooi
Yiwei Wang
X. Xiao
GNN
82
38
0
22 Feb 2022
Implicit vs Unfolded Graph Neural Networks
Implicit vs Unfolded Graph Neural Networks
Yongyi Yang
Tang Liu
Yangkun Wang
Zengfeng Huang
David Wipf
202
15
0
12 Nov 2021
On Training Implicit Models
On Training Implicit Models
Zhengyang Geng
Xinyu Zhang
Shaojie Bai
Yisen Wang
Zhouchen Lin
111
71
0
09 Nov 2021
Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node
  Classification?
Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node Classification?
Sitao Luan
Chenqing Hua
Qincheng Lu
Jiaqi Zhu
Mingde Zhao
Shuyuan Zhang
Xiaoming Chang
Doina Precup
88
115
0
12 Sep 2021
Sparsifying the Update Step in Graph Neural Networks
Sparsifying the Update Step in Graph Neural Networks
J. Lutzeyer
Changmin Wu
Michalis Vazirgiannis
53
4
0
02 Sep 2021
GRAND: Graph Neural Diffusion
GRAND: Graph Neural Diffusion
B. Chamberlain
J. Rowbottom
Maria I. Gorinova
Stefan Webb
Emanuele Rossi
M. Bronstein
GNN
123
267
0
21 Jun 2021
Convergent Graph Solvers
Convergent Graph Solvers
Junyoung Park
J. Choo
Jinkyoo Park
60
13
0
03 Jun 2021
Implicit Graph Neural Networks
Implicit Graph Neural Networks
Fangda Gu
Heng Chang
Wenwu Zhu
Somayeh Sojoudi
L. Ghaoui
GNN
77
149
0
14 Sep 2020
Hypersolvers: Toward Fast Continuous-Depth Models
Hypersolvers: Toward Fast Continuous-Depth Models
Michael Poli
Stefano Massaroli
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
BDLAI4CE
51
47
0
19 Jul 2020
AM-GCN: Adaptive Multi-channel Graph Convolutional Networks
AM-GCN: Adaptive Multi-channel Graph Convolutional Networks
Xiao Wang
Meiqi Zhu
Deyu Bo
Peng Cui
C. Shi
J. Pei
BDL
94
489
0
05 Jul 2020
Simple and Deep Graph Convolutional Networks
Simple and Deep Graph Convolutional Networks
Ming Chen
Zhewei Wei
Zengfeng Huang
Bolin Ding
Yaliang Li
GNN
119
1,486
0
04 Jul 2020
Multiscale Deep Equilibrium Models
Multiscale Deep Equilibrium Models
Shaojie Bai
V. Koltun
J. Zico Kolter
BDL
85
211
0
15 Jun 2020
Monotone operator equilibrium networks
Monotone operator equilibrium networks
Ezra Winston
J. Zico Kolter
62
130
0
15 Jun 2020
On the Bottleneck of Graph Neural Networks and its Practical
  Implications
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon
Eran Yahav
GNN
88
693
0
09 Jun 2020
Graph Random Neural Network for Semi-Supervised Learning on Graphs
Graph Random Neural Network for Semi-Supervised Learning on Graphs
Wenzheng Feng
Jie Zhang
Yuxiao Dong
Yu Han
Huanbo Luan
Qian Xu
Qiang Yang
Evgeny Kharlamov
Jie Tang
98
394
0
22 May 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
306
2,732
0
02 May 2020
Continuous Graph Neural Networks
Continuous Graph Neural Networks
Louis-Pascal Xhonneux
Meng Qu
Jian Tang
GNN
92
154
0
02 Dec 2019
Discrete and Continuous Deep Residual Learning Over Graphs
Discrete and Continuous Deep Residual Learning Over Graphs
Pedro H. C. Avelar
Anderson R. Tavares
Marco Gori
Luís C. Lamb
GNN
59
20
0
21 Nov 2019
Fast and Deep Graph Neural Networks
Fast and Deep Graph Neural Networks
Claudio Gallicchio
Alessio Micheli
GNN
66
103
0
20 Nov 2019
Graph Neural Ordinary Differential Equations
Graph Neural Ordinary Differential Equations
Michael Poli
Stefano Massaroli
Junyoung Park
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
AI4CE
113
161
0
18 Nov 2019
Graph Transformer Networks
Graph Transformer Networks
Seongjun Yun
Minbyul Jeong
Raehyun Kim
Jaewoo Kang
Hyunwoo J. Kim
131
974
0
06 Nov 2019
Deep Equilibrium Models
Deep Equilibrium Models
Shaojie Bai
J. Zico Kolter
V. Koltun
92
667
0
03 Sep 2019
DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph
  Classification
DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph Classification
Jun Wu
Jingrui He
Jiejun Xu
GNN
159
198
0
05 Jun 2019
Simplifying Graph Convolutional Networks
Simplifying Graph Convolutional Networks
Felix Wu
Tianyi Zhang
Amauri Souza
Christopher Fifty
Tao Yu
Kilian Q. Weinberger
GNN
244
3,174
0
19 Feb 2019
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Johannes Klicpera
Aleksandar Bojchevski
Stephan Günnemann
GNN
222
1,688
0
14 Oct 2018
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
243
7,653
0
01 Oct 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
417
5,111
0
19 Jun 2018
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
511
1,982
0
09 Jun 2018
Deeper Insights into Graph Convolutional Networks for Semi-Supervised
  Learning
Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning
Qimai Li
Zhichao Han
Xiao-Ming Wu
GNNSSL
189
2,826
0
22 Jan 2018
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
479
20,164
0
30 Oct 2017
Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via
  Ranking
Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking
Aleksandar Bojchevski
Stephan Günnemann
BDL
85
644
0
12 Jul 2017
Inductive Representation Learning on Large Graphs
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
509
15,247
0
07 Jun 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
593
7,455
0
04 Apr 2017
Tunable Efficient Unitary Neural Networks (EUNN) and their application
  to RNNs
Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs
Li Jing
Yichen Shen
T. Dubček
J. Peurifoy
S. Skirlo
Yann LeCun
Max Tegmark
Marin Soljacic
71
178
0
15 Dec 2016
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
412
1,823
0
25 Nov 2016
Temporal Convolutional Networks for Action Segmentation and Detection
Temporal Convolutional Networks for Action Segmentation and Detection
Colin S. Lea
Michael D. Flynn
René Vidal
A. Reiter
Gregory Hager
95
1,492
0
16 Nov 2016
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNNSSL
641
29,076
0
09 Sep 2016
Diffusion-Convolutional Neural Networks
Diffusion-Convolutional Neural Networks
James Atwood
Don Towsley
GNNDiffM
197
1,255
0
06 Nov 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Propagation Kernels
Propagation Kernels
Marion Neumann
Roman Garnett
Christian Bauckhage
Kristian Kersting
70
262
0
13 Oct 2014
On the Properties of Neural Machine Translation: Encoder-Decoder
  Approaches
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches
Kyunghyun Cho
B. V. Merrienboer
Dzmitry Bahdanau
Yoshua Bengio
AI4CEAIMat
251
6,779
0
03 Sep 2014
1