ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.08000
  4. Cited By
AHA: Human-Assisted Out-of-Distribution Generalization and Detection

AHA: Human-Assisted Out-of-Distribution Generalization and Detection

10 October 2024
Haoyue Bai
Jifan Zhang
Robert Nowak
ArXiv (abs)PDFHTMLGithub (1★)

Papers citing "AHA: Human-Assisted Out-of-Distribution Generalization and Detection"

47 / 47 papers shown
Title
Going Beyond Conventional OOD Detection
Sudarshan Regmi
OODD
106
1
0
16 Nov 2024
Deep Active Learning in the Open World
Deep Active Learning in the Open World
Tian Xie
Jifan Zhang
Haoyue Bai
R. Nowak
VLM
405
3
0
10 Nov 2024
Forgetful Active Learning with Switch Events: Efficient Sampling for
  Out-of-Distribution Data
Forgetful Active Learning with Switch Events: Efficient Sampling for Out-of-Distribution Data
Ryan Benkert
Mohit Prabhushankar
Ghassan AlRegib
OODDOOD
55
9
0
12 Jan 2023
Pareto Optimization for Active Learning under Out-of-Distribution Data
  Scenarios
Pareto Optimization for Active Learning under Out-of-Distribution Data Scenarios
Xueying Zhan
Zeyu Dai
Qingzhong Wang
Qing Li
Haoyi Xiong
Dejing Dou
Antoni B. Chan
OODD
41
3
0
04 Jul 2022
Making Look-Ahead Active Learning Strategies Feasible with Neural
  Tangent Kernels
Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels
Mohamad Amin Mohamadi
Wonho Bae
Danica J. Sutherland
67
21
0
25 Jun 2022
Out-of-Distribution Detection with Deep Nearest Neighbors
Out-of-Distribution Detection with Deep Nearest Neighbors
Yiyou Sun
Yifei Ming
Xiaojin Zhu
Yixuan Li
OODD
200
529
0
13 Apr 2022
Continual Test-Time Domain Adaptation
Continual Test-Time Domain Adaptation
Qin Wang
Olga Fink
Luc Van Gool
Dengxin Dai
OODTTA
109
428
0
25 Mar 2022
Active Learning at the ImageNet Scale
Active Learning at the ImageNet Scale
Z. Emam
Hong-Min Chu
Ping Yeh-Chiang
W. Czaja
R. Leapman
Micah Goldblum
Tom Goldstein
69
35
0
25 Nov 2021
Batch Active Learning at Scale
Batch Active Learning at Scale
Gui Citovsky
Giulia DeSalvo
Claudio Gentile
Lazaros Karydas
Anand Rajagopalan
Afshin Rostamizadeh
Sanjiv Kumar
62
156
0
29 Jul 2021
SIMILAR: Submodular Information Measures Based Active Learning In
  Realistic Scenarios
SIMILAR: Submodular Information Measures Based Active Learning In Realistic Scenarios
Suraj Kothawade
Nathan Beck
Krishnateja Killamsetty
Rishabh K. Iyer
52
106
0
01 Jul 2021
OoD-Bench: Quantifying and Understanding Two Dimensions of
  Out-of-Distribution Generalization
OoD-Bench: Quantifying and Understanding Two Dimensions of Out-of-Distribution Generalization
Nanyang Ye
Kaican Li
Haoyue Bai
Runpeng Yu
Lanqing Hong
Fengwei Zhou
Zhenguo Li
Jun Zhu
CMLOOD
78
109
0
07 Jun 2021
SelfReg: Self-supervised Contrastive Regularization for Domain
  Generalization
SelfReg: Self-supervised Contrastive Regularization for Domain Generalization
Daehee Kim
Seunghyun Park
Jinkyu Kim
Jaekoo Lee
OODSSL
127
272
0
20 Apr 2021
Domain Generalization: A Survey
Domain Generalization: A Survey
Kaiyang Zhou
Ziwei Liu
Yu Qiao
Tao Xiang
Chen Change Loy
OODAI4CE
248
1,018
0
03 Mar 2021
SWAD: Domain Generalization by Seeking Flat Minima
SWAD: Domain Generalization by Seeking Flat Minima
Junbum Cha
Sanghyuk Chun
Kyungjae Lee
Han-Cheol Cho
Seunghyun Park
Yunsung Lee
Sungrae Park
MoMe
301
458
0
17 Feb 2021
DecAug: Out-of-Distribution Generalization via Decomposed Feature
  Representation and Semantic Augmentation
DecAug: Out-of-Distribution Generalization via Decomposed Feature Representation and Semantic Augmentation
Haoyue Bai
Rui Sun
Lanqing Hong
Fengwei Zhou
Nanyang Ye
Han-Jia Ye
Shueng-Han Gary Chan
Zhenguo Li
OODOODDCML
71
79
0
17 Dec 2020
The Risks of Invariant Risk Minimization
The Risks of Invariant Risk Minimization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
OOD
83
312
0
12 Oct 2020
Energy-based Out-of-distribution Detection
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
271
1,366
0
08 Oct 2020
A Brief Review of Domain Adaptation
A Brief Review of Domain Adaptation
Abolfazl Farahani
Sahar Voghoei
Khaled Rasheed
H. Arabnia
OOD
53
545
0
07 Oct 2020
Heterogeneous Domain Generalization via Domain Mixup
Heterogeneous Domain Generalization via Domain Mixup
Yufei Wang
Haoliang Li
Alex C. Kot
OOD
55
144
0
11 Sep 2020
Self-Challenging Improves Cross-Domain Generalization
Self-Challenging Improves Cross-Domain Generalization
Zeyi Huang
Haohan Wang
Eric Xing
Dong Huang
OOD
93
632
0
05 Jul 2020
In Search of Lost Domain Generalization
In Search of Lost Domain Generalization
Ishaan Gulrajani
David Lopez-Paz
OOD
91
1,156
0
02 Jul 2020
An Empirical Process Approach to the Union Bound: Practical Algorithms
  for Combinatorial and Linear Bandits
An Empirical Process Approach to the Union Bound: Practical Algorithms for Combinatorial and Linear Bandits
Julian Katz-Samuels
Lalit P. Jain
Zohar Karnin
Kevin Jamieson
159
67
0
21 Jun 2020
Learning to Learn Single Domain Generalization
Learning to Learn Single Domain Generalization
Fengchun Qiao
Long Zhao
Xi Peng
OOD
128
443
0
30 Mar 2020
Deep Domain-Adversarial Image Generation for Domain Generalisation
Deep Domain-Adversarial Image Generation for Domain Generalisation
Kaiyang Zhou
Yongxin Yang
Timothy M. Hospedales
Tao Xiang
OOD
296
410
0
12 Mar 2020
Distributionally Robust Neural Networks for Group Shifts: On the
  Importance of Regularization for Worst-Case Generalization
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
108
1,247
0
20 Nov 2019
Discriminative Active Learning
Discriminative Active Learning
Daniel Gissin
Shai Shalev-Shwartz
55
178
0
15 Jul 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
195
2,241
0
05 Jul 2019
Sequential Experimental Design for Transductive Linear Bandits
Sequential Experimental Design for Transductive Linear Bandits
Tanner Fiez
Lalit P. Jain
Kevin Jamieson
Lillian J. Ratliff
72
109
0
20 Jun 2019
Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds
Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds
Jordan T. Ash
Chicheng Zhang
A. Krishnamurthy
John Langford
Alekh Agarwal
BDLUQCV
88
776
0
09 Jun 2019
Diverse mini-batch Active Learning
Diverse mini-batch Active Learning
Fedor Zhdanov
59
155
0
17 Jan 2019
Why ReLU networks yield high-confidence predictions far away from the
  training data and how to mitigate the problem
Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem
Matthias Hein
Maksym Andriushchenko
Julian Bitterwolf
OODD
170
558
0
13 Dec 2018
Deep Anomaly Detection with Outlier Exposure
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
183
1,487
0
11 Dec 2018
A Simple Unified Framework for Detecting Out-of-Distribution Samples and
  Adversarial Attacks
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee
Kibok Lee
Honglak Lee
Jinwoo Shin
OODD
192
2,060
0
10 Jul 2018
Benchmarking Neural Network Robustness to Common Corruptions and Surface
  Variations
Benchmarking Neural Network Robustness to Common Corruptions and Surface Variations
Dan Hendrycks
Thomas G. Dietterich
OOD
79
200
0
04 Jul 2018
Adversarial Active Learning for Deep Networks: a Margin Based Approach
Adversarial Active Learning for Deep Networks: a Margin Based Approach
Mélanie Ducoffe
F. Precioso
GANAAML
138
276
0
27 Feb 2018
Domain Generalization by Marginal Transfer Learning
Domain Generalization by Marginal Transfer Learning
Gilles Blanchard
A. Deshmukh
Ürün Dogan
Gyemin Lee
Clayton Scott
OOD
99
286
0
21 Nov 2017
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
282
9,797
0
25 Oct 2017
Learning to Generalize: Meta-Learning for Domain Generalization
Learning to Generalize: Meta-Learning for Domain Generalization
Da Li
Yongxin Yang
Yi-Zhe Song
Timothy M. Hospedales
OOD
102
1,426
0
10 Oct 2017
Deeper, Broader and Artier Domain Generalization
Deeper, Broader and Artier Domain Generalization
Da Li
Yongxin Yang
Yi-Zhe Song
Timothy M. Hospedales
OOD
124
1,451
0
09 Oct 2017
Deep Bayesian Active Learning with Image Data
Deep Bayesian Active Learning with Image Data
Y. Gal
Riashat Islam
Zoubin Ghahramani
BDLUQCV
73
1,739
0
08 Mar 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
166
3,468
0
07 Oct 2016
Deep CORAL: Correlation Alignment for Deep Domain Adaptation
Deep CORAL: Correlation Alignment for Deep Domain Adaptation
Baochen Sun
Kate Saenko
OOD
105
3,161
0
06 Jul 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
351
7,995
0
23 May 2016
Efficient and Parsimonious Agnostic Active Learning
Efficient and Parsimonious Agnostic Active Learning
Tzu-Kuo Huang
Alekh Agarwal
Daniel J. Hsu
John Langford
Robert Schapire
134
47
0
29 Jun 2015
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GANOOD
383
9,511
0
28 May 2015
Unsupervised Domain Adaptation by Backpropagation
Unsupervised Domain Adaptation by Backpropagation
Yaroslav Ganin
Victor Lempitsky
OOD
235
6,041
0
26 Sep 2014
Describing Textures in the Wild
Describing Textures in the Wild
Mircea Cimpoi
Subhransu Maji
Iasonas Kokkinos
S. Mohamed
Andrea Vedaldi
3DV
141
2,686
0
14 Nov 2013
1