ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.08399
17
105

Sequential Experimental Design for Transductive Linear Bandits

20 June 2019
Tanner Fiez
Lalit P. Jain
Kevin G. Jamieson
Lillian J. Ratliff
ArXivPDFHTML
Abstract

In this paper we introduce the transductive linear bandit problem: given a set of measurement vectors X⊂Rd\mathcal{X}\subset \mathbb{R}^dX⊂Rd, a set of items Z⊂Rd\mathcal{Z}\subset \mathbb{R}^dZ⊂Rd, a fixed confidence δ\deltaδ, and an unknown vector θ∗∈Rd\theta^{\ast}\in \mathbb{R}^dθ∗∈Rd, the goal is to infer argmaxz∈Zz⊤θ∗\text{argmax}_{z\in \mathcal{Z}} z^\top\theta^\astargmaxz∈Z​z⊤θ∗ with probability 1−δ1-\delta1−δ by making as few sequentially chosen noisy measurements of the form x⊤θ∗x^\top\theta^{\ast}x⊤θ∗ as possible. When X=Z\mathcal{X}=\mathcal{Z}X=Z, this setting generalizes linear bandits, and when X\mathcal{X}X is the standard basis vectors and Z⊂{0,1}d\mathcal{Z}\subset \{0,1\}^dZ⊂{0,1}d, combinatorial bandits. Such a transductive setting naturally arises when the set of measurement vectors is limited due to factors such as availability or cost. As an example, in drug discovery the compounds and dosages X\mathcal{X}X a practitioner may be willing to evaluate in the lab in vitro due to cost or safety reasons may differ vastly from those compounds and dosages Z\mathcal{Z}Z that can be safely administered to patients in vivo. Alternatively, in recommender systems for books, the set of books X\mathcal{X}X a user is queried about may be restricted to well known best-sellers even though the goal might be to recommend more esoteric titles Z\mathcal{Z}Z. In this paper, we provide instance-dependent lower bounds for the transductive setting, an algorithm that matches these up to logarithmic factors, and an evaluation. In particular, we provide the first non-asymptotic algorithm for linear bandits that nearly achieves the information theoretic lower bound.

View on arXiv
Comments on this paper