Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.07972
Cited By
v1
v2
v3 (latest)
Learning Equivariant Non-Local Electron Density Functionals
10 October 2024
Nicholas Gao
Eike Eberhard
Stephan Günnemann
Author Contacts:
n.gao@tum.de
e.eberhard@tum.de
s.guennemann@tum.de
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Equivariant Non-Local Electron Density Functionals"
22 / 22 papers shown
Title
Highly Accurate Real-space Electron Densities with Neural Networks
Lixue Cheng
P. Szabó
Zeno Schätzle
Derk Kooi
Jonas Köhler
Klaas J. H. Giesbertz
Frank Noé
J. Hermann
Paola Gori-Giorgi
Adam Foster
80
5
0
02 Sep 2024
Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations
Nicholas Gao
Stephan Günnemann
66
5
0
23 May 2024
On Representing Electronic Wave Functions with Sign Equivariant Neural Networks
Nicholas Gao
Stephan Günnemann
55
3
0
08 Mar 2024
Overcoming the Barrier of Orbital-Free Density Functional Theory for Molecular Systems Using Deep Learning
He Zhang
Siyuan Liu
Jiacheng You
Chang-Shu Liu
Shuxin Zheng
Ziheng Lu
Tong Wang
Nanning Zheng
Jia Zhang
46
20
0
28 Sep 2023
KineticNet: Deep learning a transferable kinetic energy functional for orbital-free density functional theory
Roman Remme
Tobias Kaczun
Maximilian Scheurer
A. Dreuw
Fred Hamprecht
61
11
0
08 May 2023
Ewald-based Long-Range Message Passing for Molecular Graphs
Arthur Kosmala
Johannes Gasteiger
Nicholas Gao
Stephan Günnemann
113
30
0
08 Mar 2023
Generalizing Neural Wave Functions
Nicholas Gao
Stephan Günnemann
37
24
0
08 Feb 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
73
90
0
07 Feb 2023
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
87
485
0
15 Jun 2022
Sampling-free Inference for Ab-Initio Potential Energy Surface Networks
Nicholas Gao
Stephan Günnemann
DiffM
68
20
0
30 May 2022
So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems
J. Frank
Oliver T. Unke
Klaus-Robert Muller
51
43
0
28 May 2022
Directional Message Passing on Molecular Graphs via Synthetic Coordinates
Johannes Klicpera
Chandan Yeshwanth
Stephan Günnemann
49
38
0
08 Nov 2021
Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions
Nicholas Gao
Stephan Günnemann
63
40
0
11 Oct 2021
GemNet: Universal Directional Graph Neural Networks for Molecules
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
97
459
0
02 Jun 2021
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
110
534
0
05 Feb 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
300
1,298
0
08 Jan 2021
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
109
913
0
14 Oct 2020
Kohn-Sham equations as regularizer: building prior knowledge into machine-learned physics
Li Li
Stephan Hoyer
Ryan Pederson
Ruoxi Sun
E. D. Cubuk
Patrick F. Riley
K. Burke
AI4CE
69
122
0
17 Sep 2020
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
95
973
0
22 Feb 2018
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
155
1,076
0
26 Jun 2017
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
172
5,011
0
27 Jun 2016
Finding Density Functionals with Machine Learning
John C. Snyder
M. Rupp
K. Hansen
K. Müller
K. Burke
110
476
0
22 Dec 2011
1