ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.07972
  4. Cited By
Learning Equivariant Non-Local Electron Density Functionals
v1v2v3 (latest)

Learning Equivariant Non-Local Electron Density Functionals

10 October 2024
Nicholas Gao
Eike Eberhard
Stephan Günnemann
Author Contacts:
n.gao@tum.dee.eberhard@tum.des.guennemann@tum.de
ArXiv (abs)PDFHTML

Papers citing "Learning Equivariant Non-Local Electron Density Functionals"

22 / 22 papers shown
Title
Highly Accurate Real-space Electron Densities with Neural Networks
Highly Accurate Real-space Electron Densities with Neural Networks
Lixue Cheng
P. Szabó
Zeno Schätzle
Derk Kooi
Jonas Köhler
Klaas J. H. Giesbertz
Frank Noé
J. Hermann
Paola Gori-Giorgi
Adam Foster
80
5
0
02 Sep 2024
Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations
Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations
Nicholas Gao
Stephan Günnemann
66
5
0
23 May 2024
On Representing Electronic Wave Functions with Sign Equivariant Neural
  Networks
On Representing Electronic Wave Functions with Sign Equivariant Neural Networks
Nicholas Gao
Stephan Günnemann
55
3
0
08 Mar 2024
Overcoming the Barrier of Orbital-Free Density Functional Theory for
  Molecular Systems Using Deep Learning
Overcoming the Barrier of Orbital-Free Density Functional Theory for Molecular Systems Using Deep Learning
He Zhang
Siyuan Liu
Jiacheng You
Chang-Shu Liu
Shuxin Zheng
Ziheng Lu
Tong Wang
Nanning Zheng
Jia Zhang
46
20
0
28 Sep 2023
KineticNet: Deep learning a transferable kinetic energy functional for
  orbital-free density functional theory
KineticNet: Deep learning a transferable kinetic energy functional for orbital-free density functional theory
Roman Remme
Tobias Kaczun
Maximilian Scheurer
A. Dreuw
Fred Hamprecht
61
11
0
08 May 2023
Ewald-based Long-Range Message Passing for Molecular Graphs
Ewald-based Long-Range Message Passing for Molecular Graphs
Arthur Kosmala
Johannes Gasteiger
Nicholas Gao
Stephan Günnemann
113
30
0
08 Mar 2023
Generalizing Neural Wave Functions
Generalizing Neural Wave Functions
Nicholas Gao
Stephan Günnemann
37
24
0
08 Feb 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
73
90
0
07 Feb 2023
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast
  and Accurate Force Fields
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
87
485
0
15 Jun 2022
Sampling-free Inference for Ab-Initio Potential Energy Surface Networks
Sampling-free Inference for Ab-Initio Potential Energy Surface Networks
Nicholas Gao
Stephan Günnemann
DiffM
68
20
0
30 May 2022
So3krates: Equivariant attention for interactions on arbitrary
  length-scales in molecular systems
So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems
J. Frank
Oliver T. Unke
Klaus-Robert Muller
51
43
0
28 May 2022
Directional Message Passing on Molecular Graphs via Synthetic
  Coordinates
Directional Message Passing on Molecular Graphs via Synthetic Coordinates
Johannes Klicpera
Chandan Yeshwanth
Stephan Günnemann
49
38
0
08 Nov 2021
Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave
  Functions
Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions
Nicholas Gao
Stephan Günnemann
63
40
0
11 Oct 2021
GemNet: Universal Directional Graph Neural Networks for Molecules
GemNet: Universal Directional Graph Neural Networks for Molecules
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
97
459
0
02 Jun 2021
Equivariant message passing for the prediction of tensorial properties
  and molecular spectra
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
110
534
0
05 Feb 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
300
1,298
0
08 Jan 2021
Machine Learning Force Fields
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
109
913
0
14 Oct 2020
Kohn-Sham equations as regularizer: building prior knowledge into
  machine-learned physics
Kohn-Sham equations as regularizer: building prior knowledge into machine-learned physics
Li Li
Stephan Hoyer
Ryan Pederson
Ruoxi Sun
E. D. Cubuk
Patrick F. Riley
K. Burke
AI4CE
69
122
0
17 Sep 2020
Tensor field networks: Rotation- and translation-equivariant neural
  networks for 3D point clouds
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
95
973
0
22 Feb 2018
SchNet: A continuous-filter convolutional neural network for modeling
  quantum interactions
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
155
1,076
0
26 Jun 2017
Gaussian Error Linear Units (GELUs)
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
172
5,011
0
27 Jun 2016
Finding Density Functionals with Machine Learning
Finding Density Functionals with Machine Learning
John C. Snyder
M. Rupp
K. Hansen
K. Müller
K. Burke
110
476
0
22 Dec 2011
1