ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.07593
  4. Cited By
A Unified Debiasing Approach for Vision-Language Models across
  Modalities and Tasks

A Unified Debiasing Approach for Vision-Language Models across Modalities and Tasks

10 October 2024
Hoin Jung
T. Jang
Xiaoqian Wang
    VLM
ArXivPDFHTML

Papers citing "A Unified Debiasing Approach for Vision-Language Models across Modalities and Tasks"

19 / 19 papers shown
Title
FairREAD: Re-fusing Demographic Attributes after Disentanglement for Fair Medical Image Classification
FairREAD: Re-fusing Demographic Attributes after Disentanglement for Fair Medical Image Classification
Yicheng Gao
Jinkui Hao
Bo Zhou
123
0
0
20 Dec 2024
Model-Agnostic Gender Debiased Image Captioning
Model-Agnostic Gender Debiased Image Captioning
Yusuke Hirota
Yuta Nakashima
Noa Garcia
FaML
80
18
0
07 Apr 2023
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image
  Encoders and Large Language Models
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
Junnan Li
Dongxu Li
Silvio Savarese
Steven C. H. Hoi
VLM
MLLM
426
4,563
0
30 Jan 2023
Contrastive Adapters for Foundation Model Group Robustness
Contrastive Adapters for Foundation Model Group Robustness
Michael Zhang
Christopher Ré
VLM
54
64
0
14 Jul 2022
A Prompt Array Keeps the Bias Away: Debiasing Vision-Language Models
  with Adversarial Learning
A Prompt Array Keeps the Bias Away: Debiasing Vision-Language Models with Adversarial Learning
Hugo Elias Berg
S. Hall
Yash Bhalgat
Wonsuk Yang
Hannah Rose Kirk
Aleksandar Shtedritski
Max Bain
VLM
78
101
0
22 Mar 2022
BLIP: Bootstrapping Language-Image Pre-training for Unified
  Vision-Language Understanding and Generation
BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
Junnan Li
Dongxu Li
Caiming Xiong
Guosheng Lin
MLLM
BDL
VLM
CLIP
532
4,360
0
28 Jan 2022
Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual
  Concepts
Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts
Yan Zeng
Xinsong Zhang
Hang Li
VLM
CLIP
68
307
0
16 Nov 2021
CHIP: CHannel Independence-based Pruning for Compact Neural Networks
CHIP: CHannel Independence-based Pruning for Compact Neural Networks
Yang Sui
Miao Yin
Yi Xie
Huy Phan
S. Zonouz
Bo Yuan
VLM
80
134
0
26 Oct 2021
Evaluating CLIP: Towards Characterization of Broader Capabilities and
  Downstream Implications
Evaluating CLIP: Towards Characterization of Broader Capabilities and Downstream Implications
Sandhini Agarwal
Gretchen Krueger
Jack Clark
Alec Radford
Jong Wook Kim
Miles Brundage
63
142
0
05 Aug 2021
Understanding and Evaluating Racial Biases in Image Captioning
Understanding and Evaluating Racial Biases in Image Captioning
Dora Zhao
Angelina Wang
Olga Russakovsky
61
138
0
16 Jun 2021
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIP
VLM
929
29,436
0
26 Feb 2021
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
654
41,103
0
22 Oct 2020
Bias in Bios: A Case Study of Semantic Representation Bias in a
  High-Stakes Setting
Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting
Maria De-Arteaga
Alexey Romanov
Hanna M. Wallach
J. Chayes
C. Borgs
Alexandra Chouldechova
S. Geyik
K. Kenthapadi
Adam Tauman Kalai
186
458
0
27 Jan 2019
Hyperparameters and Tuning Strategies for Random Forest
Hyperparameters and Tuning Strategies for Random Forest
Philipp Probst
Marvin N. Wright
A. Boulesteix
120
1,395
0
10 Apr 2018
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
303
20,023
0
07 Oct 2016
SPICE: Semantic Propositional Image Caption Evaluation
SPICE: Semantic Propositional Image Caption Evaluation
Peter Anderson
Basura Fernando
Mark Johnson
Stephen Gould
EGVM
102
1,914
0
29 Jul 2016
Microsoft COCO Captions: Data Collection and Evaluation Server
Microsoft COCO Captions: Data Collection and Evaluation Server
Xinlei Chen
Hao Fang
Nayeon Lee
Ramakrishna Vedantam
Saurabh Gupta
Piotr Dollar
C. L. Zitnick
215
2,478
0
01 Apr 2015
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
264
12,439
0
24 Jun 2012
Analysis of a Random Forests Model
Analysis of a Random Forests Model
Gérard Biau
157
1,393
0
03 May 2010
1