ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.09451
16
444

Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting

27 January 2019
Maria De-Arteaga
Alexey Romanov
Hanna M. Wallach
J. Chayes
C. Borgs
Alexandra Chouldechova
S. Geyik
K. Kenthapadi
Adam Tauman Kalai
ArXivPDFHTML
Abstract

We present a large-scale study of gender bias in occupation classification, a task where the use of machine learning may lead to negative outcomes on peoples' lives. We analyze the potential allocation harms that can result from semantic representation bias. To do so, we study the impact on occupation classification of including explicit gender indicators---such as first names and pronouns---in different semantic representations of online biographies. Additionally, we quantify the bias that remains when these indicators are "scrubbed," and describe proxy behavior that occurs in the absence of explicit gender indicators. As we demonstrate, differences in true positive rates between genders are correlated with existing gender imbalances in occupations, which may compound these imbalances.

View on arXiv
Comments on this paper