Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.04120
Cited By
v1
v2 (latest)
Rethinking Fair Representation Learning for Performance-Sensitive Tasks
5 October 2024
Charles Jones
Fabio De Sousa Ribeiro
Mélanie Roschewitz
Daniel Coelho De Castro
Ben Glocker
FaML
OOD
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Rethinking Fair Representation Learning for Performance-Sensitive Tasks"
41 / 41 papers shown
Title
Subgroups Matter for Robust Bias Mitigation
A. Alloula
Charles Jones
Ben Glocker
Bartłomiej W. Papież
36
0
0
27 May 2025
The Vendiscope: An Algorithmic Microscope For Data Collections
Amey P. Pasarkar
Adji Bousso Dieng
90
2
0
15 Feb 2025
10 Years of Fair Representations: Challenges and Opportunities
Mattia Cerrato
Marius Köppel
Philipp Wolf
Stefan Kramer
FaML
89
3
0
04 Jul 2024
Causal Context Connects Counterfactual Fairness to Robust Prediction and Group Fairness
Jacy Reese Anthis
Victor Veitch
74
16
0
30 Oct 2023
FairTune: Optimizing Parameter Efficient Fine Tuning for Fairness in Medical Image Analysis
Raman Dutt
Ondrej Bohdal
Sotirios A. Tsaftaris
Timothy M. Hospedales
102
14
0
08 Oct 2023
The Role of Subgroup Separability in Group-Fair Medical Image Classification
Charles Jones
Mélanie Roschewitz
Ben Glocker
OOD
70
10
0
06 Jul 2023
Identifiability of latent-variable and structural-equation models: from linear to nonlinear
Aapo Hyvarinen
Ilyes Khemakhem
R. Monti
CML
94
46
0
06 Feb 2023
The Unfairness of Fair Machine Learning: Levelling down and strict egalitarianism by default
Brent Mittelstadt
Sandra Wachter
Chris Russell
FaML
77
49
0
05 Feb 2023
MEDFAIR: Benchmarking Fairness for Medical Imaging
Yongshuo Zong
Yongxin Yang
Timothy M. Hospedales
OOD
148
65
0
04 Oct 2022
Fairness and robustness in anti-causal prediction
Maggie Makar
Alexander DÁmour
OOD
97
12
0
20 Sep 2022
Causal Fairness Analysis
Drago Plečko
Elias Bareinboim
CML
51
49
0
23 Jul 2022
Invariant and Transportable Representations for Anti-Causal Domain Shifts
Yibo Jiang
Victor Veitch
OOD
183
36
0
04 Jul 2022
Improving the Fairness of Chest X-ray Classifiers
Haoran Zhang
Natalie Dullerud
Karsten Roth
Lauren Oakden-Rayner
Stephen Pfohl
Marzyeh Ghassemi
79
66
0
23 Mar 2022
Leveling Down in Computer Vision: Pareto Inefficiencies in Fair Deep Classifiers
Dominik Zietlow
Michael Lohaus
Guha Balakrishnan
Matthäus Kleindessner
Francesco Locatello
Bernhard Schölkopf
Chris Russell
FaML
69
74
0
09 Mar 2022
Diagnosing failures of fairness transfer across distribution shift in real-world medical settings
Jessica Schrouff
Natalie Harris
Oluwasanmi Koyejo
Ibrahim Alabdulmohsin
Eva Schnider
...
Vivek Natarajan
Alan Karthikesalingam
Katherine A. Heller
Silvia Chiappa
Alexander DÁmour
OOD
145
56
0
02 Feb 2022
Evaluating Deep Neural Networks Trained on Clinical Images in Dermatology with the Fitzpatrick 17k Dataset
Matthew Groh
Caleb Harris
L. Soenksen
Felix Lau
Rachel Han
Aerin Kim
A. Koochek
Omar Badri
155
192
0
20 Apr 2021
EnD: Entangling and Disentangling deep representations for bias correction
Enzo Tartaglione
C. Barbano
Marco Grangetto
81
124
0
02 Mar 2021
Fundamental Limits and Tradeoffs in Invariant Representation Learning
Han Zhao
Chen Dan
Bryon Aragam
Tommi Jaakkola
Geoffrey J. Gordon
Pradeep Ravikumar
FaML
88
45
0
19 Dec 2020
Minimax Pareto Fairness: A Multi Objective Perspective
Natalia Martínez
Martín Bertrán
Guillermo Sapiro
FaML
79
197
0
03 Nov 2020
An Empirical Characterization of Fair Machine Learning For Clinical Risk Prediction
Stephen Pfohl
Agata Foryciarz
N. Shah
FaML
102
113
0
20 Jul 2020
Fairness by Learning Orthogonal Disentangled Representations
Mhd Hasan Sarhan
Nassir Navab
Abouzar Eslami
Shadi Albarqouni
FaML
OOD
CML
98
97
0
12 Mar 2020
Causality matters in medical imaging
Daniel Coelho De Castro
Ian Walker
Ben Glocker
CML
59
346
0
17 Dec 2019
Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation
Zeyu Wang
Klint Qinami
Yannis Karakozis
Kyle Genova
P. Nair
Kenji Hata
Olga Russakovsky
89
365
0
26 Nov 2019
Conditional Learning of Fair Representations
Han Zhao
Amanda Coston
T. Adel
Geoffrey J. Gordon
FaML
84
109
0
16 Oct 2019
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
77
598
0
10 Jul 2019
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
205
2,246
0
05 Jul 2019
Inherent Tradeoffs in Learning Fair Representations
Han Zhao
Geoffrey J. Gordon
FaML
70
218
0
19 Jun 2019
Flexibly Fair Representation Learning by Disentanglement
Elliot Creager
David Madras
J. Jacobsen
Marissa A. Weis
Kevin Swersky
T. Pitassi
R. Zemel
FaML
OOD
196
334
0
06 Jun 2019
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison
Jeremy Irvin
Pranav Rajpurkar
M. Ko
Yifan Yu
Silviana Ciurea-Ilcus
...
D. Larson
C. Langlotz
Bhavik Patel
M. Lungren
A. Ng
120
2,605
0
21 Jan 2019
Learning Not to Learn: Training Deep Neural Networks with Biased Data
Byungju Kim
Hyunwoo Kim
Kyungsu Kim
Sungjin Kim
Junmo Kim
OOD
62
411
0
26 Dec 2018
Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings
Mohsan S. Alvi
Andrew Zisserman
C. Nellåker
FaML
133
248
0
06 Sep 2018
Path-Specific Counterfactual Fairness
Silvia Chiappa
Thomas P. S. Gillam
CML
FaML
95
341
0
22 Feb 2018
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
384
685
0
17 Feb 2018
Counterfactual Fairness
Matt J. Kusner
Joshua R. Loftus
Chris Russell
Ricardo M. A. Silva
FaML
230
1,587
0
20 Mar 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
356
4,636
0
10 Nov 2016
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
304
2,131
0
24 Oct 2016
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
236
4,341
0
07 Oct 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,641
0
10 Dec 2015
Censoring Representations with an Adversary
Harrison Edwards
Amos Storkey
AAML
FaML
74
506
0
18 Nov 2015
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
124
974
0
06 Jan 2015
Causal Networks: Semantics and Expressiveness
Thomas Verma
Judea Pearl
GNN
108
551
0
27 Mar 2013
1