ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.03969
  4. Cited By
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky

Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky

4 October 2024
Ethan N. Epperly
J. Tropp
R. Webber
ArXivPDFHTML

Papers citing "Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky"

14 / 14 papers shown
Title
Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project
Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project
Pratik Rathore
Zachary Frangella
Sachin Garg
Shaghayegh Fazliani
Michał Dereziński
Madeleine Udell
50
0
0
19 May 2025
The fast committor machine: Interpretable prediction with kernels
The fast committor machine: Interpretable prediction with kernels
D. Aristoff
Mats S. Johnson
Gideon Simpson
Robert J. Webber
50
5
0
16 May 2024
Kernel quadrature with randomly pivoted Cholesky
Kernel quadrature with randomly pivoted Cholesky
Ethan N. Epperly
Elvira Moreno
64
9
0
06 Jun 2023
Robust, randomized preconditioning for kernel ridge regression
Robust, randomized preconditioning for kernel ridge regression
Mateo Díaz
Ethan N. Epperly
Zachary Frangella
J. Tropp
R. Webber
59
12
0
24 Apr 2023
Randomly pivoted Cholesky: Practical approximation of a kernel matrix
  with few entry evaluations
Randomly pivoted Cholesky: Practical approximation of a kernel matrix with few entry evaluations
Yifan Chen
Ethan N. Epperly
J. Tropp
R. Webber
50
32
0
13 Jul 2022
Machine Learning Force Fields
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
90
910
0
14 Oct 2020
Kernel methods through the roof: handling billions of points efficiently
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
68
116
0
18 Jun 2020
Exact Gaussian Processes on a Million Data Points
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
45
230
0
19 Mar 2019
On Fast Leverage Score Sampling and Optimal Learning
On Fast Leverage Score Sampling and Optimal Learning
Alessandro Rudi
Daniele Calandriello
Luigi Carratino
Lorenzo Rosasco
46
82
0
31 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
133
1,097
0
28 Sep 2018
Gaussian Processes and Kernel Methods: A Review on Connections and
  Equivalences
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
Motonobu Kanagawa
Philipp Hennig
Dino Sejdinovic
Bharath K. Sriperumbudur
GP
BDL
126
342
0
06 Jul 2018
Sublinear Time Low-Rank Approximation of Positive Semidefinite Matrices
Sublinear Time Low-Rank Approximation of Positive Semidefinite Matrices
Cameron Musco
David P. Woodruff
44
58
0
11 Apr 2017
Faster Kernel Ridge Regression Using Sketching and Preconditioning
Faster Kernel Ridge Regression Using Sketching and Preconditioning
H. Avron
K. Clarkson
David P. Woodruff
65
125
0
10 Nov 2016
Preconditioning Kernel Matrices
Preconditioning Kernel Matrices
Kurt Cutajar
Michael A. Osborne
John P. Cunningham
Maurizio Filippone
60
73
0
22 Feb 2016
1