ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.03494
  4. Cited By
Generative Artificial Intelligence for Navigating Synthesizable Chemical
  Space

Generative Artificial Intelligence for Navigating Synthesizable Chemical Space

4 October 2024
Wenhao Gao
Shitong Luo
Connor W. Coley
ArXiv (abs)PDFHTML

Papers citing "Generative Artificial Intelligence for Navigating Synthesizable Chemical Space"

17 / 17 papers shown
Title
LLM-Augmented Chemical Synthesis and Design Decision Programs
LLM-Augmented Chemical Synthesis and Design Decision Programs
Haorui Wang
Jeff Guo
Lingkai Kong
R. Ramprasad
Philippe Schwaller
Yuanqi Du
Chao Zhang
84
0
0
11 May 2025
GraphXForm: Graph transformer for computer-aided molecular design
GraphXForm: Graph transformer for computer-aided molecular design
Jonathan Pirnay
Jan G. Rittig
Alexander B. Wolf
Martin Grohe
Jakob Burger
Alexander Mitsos
D. G. Grimm
AI4CE
139
1
0
03 Nov 2024
Differentiable Scaffolding Tree for Molecular Optimization
Differentiable Scaffolding Tree for Molecular Optimization
Tianfan Fu
Wenhao Gao
Cao Xiao
Jacob Yasonik
Connor W. Coley
Jimeng Sun
84
78
0
22 Sep 2021
Flow Network based Generative Models for Non-Iterative Diverse Candidate
  Generation
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
Emmanuel Bengio
Moksh Jain
Maksym Korablyov
Doina Precup
Yoshua Bengio
103
336
0
08 Jun 2021
Improved Denoising Diffusion Probabilistic Models
Improved Denoising Diffusion Probabilistic Models
Alex Nichol
Prafulla Dhariwal
DiffM
354
3,728
0
18 Feb 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical
  Distributions
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
297
426
0
10 Feb 2021
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
759
18,408
0
19 Jun 2020
Molecular Design in Synthetically Accessible Chemical Space via Deep
  Reinforcement Learning
Molecular Design in Synthetically Accessible Chemical Space via Deep Reinforcement Learning
Julien Horwood
Emmanuel Noutahi
AI4CE
65
69
0
29 Apr 2020
Autonomous discovery in the chemical sciences part II: Outlook
Autonomous discovery in the chemical sciences part II: Outlook
Connor W. Coley
Natalie S. Eyke
K. Jensen
83
175
0
30 Mar 2020
The Synthesizability of Molecules Proposed by Generative Models
The Synthesizability of Molecules Proposed by Generative Models
Wenhao Gao
Connor W. Coley
66
257
0
17 Feb 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
651
4,925
0
23 Jan 2020
ChemBO: Bayesian Optimization of Small Organic Molecules with
  Synthesizable Recommendations
ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations
Ksenia Korovina
Sailun Xu
Kirthevasan Kandasamy
Willie Neiswanger
Barnabás Póczós
J. Schneider
Eric Xing
103
123
0
05 Aug 2019
GuacaMol: Benchmarking Models for De Novo Molecular Design
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
121
714
0
22 Nov 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
359
1,371
0
12 Feb 2018
Molecular De Novo Design through Deep Reinforcement Learning
Molecular De Novo Design through Deep Reinforcement Learning
Marcus Olivecrona
T. Blaschke
Ola Engkvist
Hongming Chen
BDL
150
1,019
0
25 Apr 2017
Grammar Variational Autoencoder
Grammar Variational Autoencoder
Matt J. Kusner
Brooks Paige
José Miguel Hernández-Lobato
BDLDRL
93
844
0
06 Mar 2017
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
180
2,945
0
07 Oct 2016
1