ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.03424
  4. Cited By
Cayley Graph Propagation
v1v2 (latest)

Cayley Graph Propagation

4 October 2024
JJ Wilson
Maya Bechler-Speicher
Petar Veličković
ArXiv (abs)PDFHTML

Papers citing "Cayley Graph Propagation"

50 / 55 papers shown
Title
TxPert: Leveraging Biochemical Relationships for Out-of-Distribution Transcriptomic Perturbation Prediction
TxPert: Leveraging Biochemical Relationships for Out-of-Distribution Transcriptomic Perturbation Prediction
Frederik Wenkel
Wilson Tu
Cassandra Masschelein
Hamed Shirzad
Cian Eastwood
...
Jiarui Ding
Marta M. Fay
Berton Earnshaw
Emmanuel Noutahi
Alisandra K. Denton
OODD
62
1
0
20 May 2025
Schreier-Coset Graph Propagation
Schreier-Coset Graph Propagation
Aryan Mishra
Lizhen Lin
91
0
0
15 May 2025
CayleyPy RL: Pathfinding and Reinforcement Learning on Cayley Graphs
CayleyPy RL: Pathfinding and Reinforcement Learning on Cayley Graphs
A.Chervov
A.Soibelman
S.Lytkin
I.Kiselev
S.Fironov
...
L.Shishina
D.Mamayeva
A.Korolkova
Kemal Kurniawan
A.Romanov
98
0
0
25 Feb 2025
Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks
Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks
Maya Bechler-Speicher
Ben Finkelshtein
Fabrizio Frasca
Luis Muller
Jan Tönshoff
...
Michael M. Bronstein
Mathias Niepert
Bryan Perozzi
Mikhail Galkin
Christopher Morris
OOD
184
6
0
21 Feb 2025
What makes a good feedforward computational graph?
What makes a good feedforward computational graph?
Alex Vitvitskyi
J. G. Araújo
Marc Lackenby
Petar Velickovic
113
3
0
10 Feb 2025
Deep Equilibrium Algorithmic Reasoning
Deep Equilibrium Algorithmic Reasoning
Dobrik Georgiev
JJ Wilson
Davide Buffelli
Pietro Lio
84
1
0
19 Oct 2024
Commute-Time-Optimised Graphs for GNNs
Commute-Time-Optimised Graphs for GNNs
Igor Sterner
Shiye Su
Petar Velickovic
74
2
0
09 Jul 2024
PANDA: Expanded Width-Aware Message Passing Beyond Rewiring
PANDA: Expanded Width-Aware Message Passing Beyond Rewiring
Jeongwhan Choi
Sumin Park
Hyowon Wi
Sung-Bae Cho
Noseong Park
GNN
91
2
0
06 Jun 2024
Temporal Graph Rewiring with Expander Graphs
Temporal Graph Rewiring with Expander Graphs
Katarina Petrović
Shenyang Huang
Farimah Poursafaei
Petar Velickovic
AI4CE
93
4
0
04 Jun 2024
Probabilistic Graph Rewiring via Virtual Nodes
Probabilistic Graph Rewiring via Virtual Nodes
Chendi Qian
Andrei Manolache
Christopher Morris
Mathias Niepert
AI4CE
95
3
0
27 May 2024
Understanding Virtual Nodes: Oversquashing and Node Heterogeneity
Understanding Virtual Nodes: Oversquashing and Node Heterogeneity
Joshua Southern
Francesco Di Giovanni
Michael M. Bronstein
J. Lutzeyer
133
1
0
22 May 2024
VN-EGNN: E(3)-Equivariant Graph Neural Networks with Virtual Nodes
  Enhance Protein Binding Site Identification
VN-EGNN: E(3)-Equivariant Graph Neural Networks with Virtual Nodes Enhance Protein Binding Site Identification
Florian Sestak
Lisa Schneckenreiter
Johannes Brandstetter
Sepp Hochreiter
Andreas Mayr
Günter Klambauer
98
11
0
10 Apr 2024
Higher-Order Expander Graph Propagation
Higher-Order Expander Graph Propagation
Thomas Christie
Yu He
57
3
0
14 Nov 2023
Exposition on over-squashing problem on GNNs: Current Methods,
  Benchmarks and Challenges
Exposition on over-squashing problem on GNNs: Current Methods, Benchmarks and Challenges
Dai Shi
Andi Han
Lequan Lin
Yi Guo
Junbin Gao
82
14
0
13 Nov 2023
Locality-Aware Graph-Rewiring in GNNs
Locality-Aware Graph-Rewiring in GNNs
Federico Barbero
A. Velingker
Amin Saberi
Michael M. Bronstein
Francesco Di Giovanni
84
32
0
02 Oct 2023
Graph Neural Networks Use Graphs When They Shouldn't
Graph Neural Networks Use Graphs When They Shouldn't
Maya Bechler-Speicher
Ido Amos
Ran Gilad-Bachrach
Amir Globerson
GNNAI4CE
32
15
0
08 Sep 2023
Where Did the Gap Go? Reassessing the Long-Range Graph Benchmark
Where Did the Gap Go? Reassessing the Long-Range Graph Benchmark
Jan Tönshoff
Martin Ritzert
Eran Rosenbluth
Martin Grohe
81
54
0
01 Sep 2023
How does over-squashing affect the power of GNNs?
How does over-squashing affect the power of GNNs?
Francesco Di Giovanni
T. Konstantin Rusch
Michael M. Bronstein
Andreea Deac
Marc Lackenby
Siddhartha Mishra
Petar Velivcković
85
38
0
06 Jun 2023
A Survey on Oversmoothing in Graph Neural Networks
A Survey on Oversmoothing in Graph Neural Networks
T. Konstantin Rusch
Michael M. Bronstein
Siddhartha Mishra
87
213
0
20 Mar 2023
Exphormer: Sparse Transformers for Graphs
Exphormer: Sparse Transformers for Graphs
Hamed Shirzad
A. Velingker
B. Venkatachalam
Danica J. Sutherland
A. Sinop
56
117
0
10 Mar 2023
Understanding Oversquashing in GNNs through the Lens of Effective
  Resistance
Understanding Oversquashing in GNNs through the Lens of Effective Resistance
Mitchell Black
Qingsong Wang
A. Nayyeri
Yusu Wang
66
68
0
14 Feb 2023
On Over-Squashing in Message Passing Neural Networks: The Impact of
  Width, Depth, and Topology
On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology
Francesco Di Giovanni
Lorenzo Giusti
Federico Barbero
Giulia Luise
Pietro Lio
Michael M. Bronstein
100
120
0
06 Feb 2023
On the Connection Between MPNN and Graph Transformer
On the Connection Between MPNN and Graph Transformer
Chen Cai
Truong-Son Hy
Rose Yu
Yusu Wang
91
55
0
27 Jan 2023
Revisiting Over-smoothing and Over-squashing Using Ollivier-Ricci
  Curvature
Revisiting Over-smoothing and Over-squashing Using Ollivier-Ricci Curvature
K. Nguyen
Hieu Nong
T. Nguyen
Nhat Ho
Khuong N. Nguyen
Vinh Phu Nguyen
78
68
0
28 Nov 2022
FoSR: First-order spectral rewiring for addressing oversquashing in GNNs
FoSR: First-order spectral rewiring for addressing oversquashing in GNNs
Kedar Karhadkar
P. Banerjee
Guido Montúfar
77
66
0
21 Oct 2022
Expander Graph Propagation
Expander Graph Propagation
Andreea Deac
Marc Lackenby
Petar Velivcković
137
56
0
06 Oct 2022
Oversquashing in GNNs through the lens of information contraction and
  graph expansion
Oversquashing in GNNs through the lens of information contraction and graph expansion
P. Banerjee
Kedar Karhadkar
Yu Guang Wang
Uri Alon
Guido Montúfar
56
46
0
06 Aug 2022
Understanding convolution on graphs via energies
Understanding convolution on graphs via energies
Francesco Di Giovanni
J. Rowbottom
B. Chamberlain
Thomas Markovich
Michael M. Bronstein
GNN
46
50
0
22 Jun 2022
Long Range Graph Benchmark
Long Range Graph Benchmark
Vijay Prakash Dwivedi
Ladislav Rampášek
Mikhail Galkin
Alipanah Parviz
Guy Wolf
Anh Tuan Luu
Dominique Beaini
84
218
0
16 Jun 2022
DiffWire: Inductive Graph Rewiring via the Lovász Bound
DiffWire: Inductive Graph Rewiring via the Lovász Bound
Adrián Arnaiz-Rodríguez
Ahmed Begga
Francisco Escolano
Nuria Oliver
79
67
0
15 Jun 2022
Graph-Coupled Oscillator Networks
Graph-Coupled Oscillator Networks
T. Konstantin Rusch
B. Chamberlain
J. Rowbottom
S. Mishra
M. Bronstein
95
115
0
04 Feb 2022
Understanding over-squashing and bottlenecks on graphs via curvature
Understanding over-squashing and bottlenecks on graphs via curvature
Jake Topping
Francesco Di Giovanni
B. Chamberlain
Xiaowen Dong
M. Bronstein
108
448
0
29 Nov 2021
Rethinking Graph Transformers with Spectral Attention
Rethinking Graph Transformers with Spectral Attention
Devin Kreuzer
Dominique Beaini
William L. Hamilton
Vincent Létourneau
Prudencio Tossou
102
543
0
07 Jun 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
358
1,160
0
27 Apr 2021
Design Space for Graph Neural Networks
Design Space for Graph Neural Networks
Jiaxuan You
Rex Ying
J. Leskovec
GNNAI4CE
187
321
0
17 Nov 2020
From Local Structures to Size Generalization in Graph Neural Networks
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNNAI4CE
215
135
0
17 Oct 2020
TUDataset: A collection of benchmark datasets for learning with graphs
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
239
827
0
16 Jul 2020
Array Programming with NumPy
Array Programming with NumPy
Charles R. Harris
K. Millman
S. Walt
R. Gommers
Pauli Virtanen
...
Tyler Reddy
Warren Weckesser
Hameer Abbasi
C. Gohlke
T. Oliphant
156
14,986
0
18 Jun 2020
On the Bottleneck of Graph Neural Networks and its Practical
  Implications
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon
Eran Yahav
GNN
91
694
0
09 Jun 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
309
2,746
0
02 May 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
529
42,559
0
03 Dec 2019
Diffusion Improves Graph Learning
Diffusion Improves Graph Learning
Johannes Klicpera
Stefan Weißenberger
Stephan Günnemann
GNN
155
710
0
28 Oct 2019
Revisiting Graph Neural Networks: All We Have is Low-Pass Filters
Revisiting Graph Neural Networks: All We Have is Low-Pass Filters
Hoang NT
Takanori Maehara
GNN
124
434
0
23 May 2019
Fast Graph Representation Learning with PyTorch Geometric
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DHGNN3DPC
237
4,361
0
06 Mar 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaMLGNNAI4TSAI4CE
783
8,554
0
03 Jan 2019
Graph Neural Networks: A Review of Methods and Applications
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CEGNN
1.1K
5,532
0
20 Dec 2018
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
251
7,681
0
01 Oct 2018
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
516
1,987
0
09 Jun 2018
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CENAI
766
3,129
0
04 Jun 2018
Deeper Insights into Graph Convolutional Networks for Semi-Supervised
  Learning
Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning
Qimai Li
Zhichao Han
Xiao-Ming Wu
GNNSSL
189
2,828
0
22 Jan 2018
12
Next