Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.03424
Cited By
v1
v2 (latest)
Cayley Graph Propagation
4 October 2024
JJ Wilson
Maya Bechler-Speicher
Petar Veličković
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Cayley Graph Propagation"
50 / 55 papers shown
Title
TxPert: Leveraging Biochemical Relationships for Out-of-Distribution Transcriptomic Perturbation Prediction
Frederik Wenkel
Wilson Tu
Cassandra Masschelein
Hamed Shirzad
Cian Eastwood
...
Jiarui Ding
Marta M. Fay
Berton Earnshaw
Emmanuel Noutahi
Alisandra K. Denton
OODD
62
1
0
20 May 2025
Schreier-Coset Graph Propagation
Aryan Mishra
Lizhen Lin
91
0
0
15 May 2025
CayleyPy RL: Pathfinding and Reinforcement Learning on Cayley Graphs
A.Chervov
A.Soibelman
S.Lytkin
I.Kiselev
S.Fironov
...
L.Shishina
D.Mamayeva
A.Korolkova
Kemal Kurniawan
A.Romanov
98
0
0
25 Feb 2025
Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks
Maya Bechler-Speicher
Ben Finkelshtein
Fabrizio Frasca
Luis Muller
Jan Tönshoff
...
Michael M. Bronstein
Mathias Niepert
Bryan Perozzi
Mikhail Galkin
Christopher Morris
OOD
184
6
0
21 Feb 2025
What makes a good feedforward computational graph?
Alex Vitvitskyi
J. G. Araújo
Marc Lackenby
Petar Velickovic
113
3
0
10 Feb 2025
Deep Equilibrium Algorithmic Reasoning
Dobrik Georgiev
JJ Wilson
Davide Buffelli
Pietro Lio
84
1
0
19 Oct 2024
Commute-Time-Optimised Graphs for GNNs
Igor Sterner
Shiye Su
Petar Velickovic
74
2
0
09 Jul 2024
PANDA: Expanded Width-Aware Message Passing Beyond Rewiring
Jeongwhan Choi
Sumin Park
Hyowon Wi
Sung-Bae Cho
Noseong Park
GNN
91
2
0
06 Jun 2024
Temporal Graph Rewiring with Expander Graphs
Katarina Petrović
Shenyang Huang
Farimah Poursafaei
Petar Velickovic
AI4CE
93
4
0
04 Jun 2024
Probabilistic Graph Rewiring via Virtual Nodes
Chendi Qian
Andrei Manolache
Christopher Morris
Mathias Niepert
AI4CE
95
3
0
27 May 2024
Understanding Virtual Nodes: Oversquashing and Node Heterogeneity
Joshua Southern
Francesco Di Giovanni
Michael M. Bronstein
J. Lutzeyer
133
1
0
22 May 2024
VN-EGNN: E(3)-Equivariant Graph Neural Networks with Virtual Nodes Enhance Protein Binding Site Identification
Florian Sestak
Lisa Schneckenreiter
Johannes Brandstetter
Sepp Hochreiter
Andreas Mayr
Günter Klambauer
98
11
0
10 Apr 2024
Higher-Order Expander Graph Propagation
Thomas Christie
Yu He
57
3
0
14 Nov 2023
Exposition on over-squashing problem on GNNs: Current Methods, Benchmarks and Challenges
Dai Shi
Andi Han
Lequan Lin
Yi Guo
Junbin Gao
82
14
0
13 Nov 2023
Locality-Aware Graph-Rewiring in GNNs
Federico Barbero
A. Velingker
Amin Saberi
Michael M. Bronstein
Francesco Di Giovanni
84
32
0
02 Oct 2023
Graph Neural Networks Use Graphs When They Shouldn't
Maya Bechler-Speicher
Ido Amos
Ran Gilad-Bachrach
Amir Globerson
GNN
AI4CE
32
15
0
08 Sep 2023
Where Did the Gap Go? Reassessing the Long-Range Graph Benchmark
Jan Tönshoff
Martin Ritzert
Eran Rosenbluth
Martin Grohe
81
54
0
01 Sep 2023
How does over-squashing affect the power of GNNs?
Francesco Di Giovanni
T. Konstantin Rusch
Michael M. Bronstein
Andreea Deac
Marc Lackenby
Siddhartha Mishra
Petar Velivcković
85
38
0
06 Jun 2023
A Survey on Oversmoothing in Graph Neural Networks
T. Konstantin Rusch
Michael M. Bronstein
Siddhartha Mishra
87
213
0
20 Mar 2023
Exphormer: Sparse Transformers for Graphs
Hamed Shirzad
A. Velingker
B. Venkatachalam
Danica J. Sutherland
A. Sinop
56
117
0
10 Mar 2023
Understanding Oversquashing in GNNs through the Lens of Effective Resistance
Mitchell Black
Qingsong Wang
A. Nayyeri
Yusu Wang
66
68
0
14 Feb 2023
On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology
Francesco Di Giovanni
Lorenzo Giusti
Federico Barbero
Giulia Luise
Pietro Lio
Michael M. Bronstein
100
120
0
06 Feb 2023
On the Connection Between MPNN and Graph Transformer
Chen Cai
Truong-Son Hy
Rose Yu
Yusu Wang
91
55
0
27 Jan 2023
Revisiting Over-smoothing and Over-squashing Using Ollivier-Ricci Curvature
K. Nguyen
Hieu Nong
T. Nguyen
Nhat Ho
Khuong N. Nguyen
Vinh Phu Nguyen
78
68
0
28 Nov 2022
FoSR: First-order spectral rewiring for addressing oversquashing in GNNs
Kedar Karhadkar
P. Banerjee
Guido Montúfar
77
66
0
21 Oct 2022
Expander Graph Propagation
Andreea Deac
Marc Lackenby
Petar Velivcković
137
56
0
06 Oct 2022
Oversquashing in GNNs through the lens of information contraction and graph expansion
P. Banerjee
Kedar Karhadkar
Yu Guang Wang
Uri Alon
Guido Montúfar
56
46
0
06 Aug 2022
Understanding convolution on graphs via energies
Francesco Di Giovanni
J. Rowbottom
B. Chamberlain
Thomas Markovich
Michael M. Bronstein
GNN
46
50
0
22 Jun 2022
Long Range Graph Benchmark
Vijay Prakash Dwivedi
Ladislav Rampášek
Mikhail Galkin
Alipanah Parviz
Guy Wolf
Anh Tuan Luu
Dominique Beaini
84
218
0
16 Jun 2022
DiffWire: Inductive Graph Rewiring via the Lovász Bound
Adrián Arnaiz-Rodríguez
Ahmed Begga
Francisco Escolano
Nuria Oliver
79
67
0
15 Jun 2022
Graph-Coupled Oscillator Networks
T. Konstantin Rusch
B. Chamberlain
J. Rowbottom
S. Mishra
M. Bronstein
95
115
0
04 Feb 2022
Understanding over-squashing and bottlenecks on graphs via curvature
Jake Topping
Francesco Di Giovanni
B. Chamberlain
Xiaowen Dong
M. Bronstein
108
448
0
29 Nov 2021
Rethinking Graph Transformers with Spectral Attention
Devin Kreuzer
Dominique Beaini
William L. Hamilton
Vincent Létourneau
Prudencio Tossou
102
543
0
07 Jun 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
358
1,160
0
27 Apr 2021
Design Space for Graph Neural Networks
Jiaxuan You
Rex Ying
J. Leskovec
GNN
AI4CE
187
321
0
17 Nov 2020
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
215
135
0
17 Oct 2020
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
239
827
0
16 Jul 2020
Array Programming with NumPy
Charles R. Harris
K. Millman
S. Walt
R. Gommers
Pauli Virtanen
...
Tyler Reddy
Warren Weckesser
Hameer Abbasi
C. Gohlke
T. Oliphant
156
14,986
0
18 Jun 2020
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon
Eran Yahav
GNN
91
694
0
09 Jun 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
309
2,746
0
02 May 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
529
42,559
0
03 Dec 2019
Diffusion Improves Graph Learning
Johannes Klicpera
Stefan Weißenberger
Stephan Günnemann
GNN
155
710
0
28 Oct 2019
Revisiting Graph Neural Networks: All We Have is Low-Pass Filters
Hoang NT
Takanori Maehara
GNN
124
434
0
23 May 2019
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DH
GNN
3DPC
237
4,361
0
06 Mar 2019
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
783
8,554
0
03 Jan 2019
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CE
GNN
1.1K
5,532
0
20 Dec 2018
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
251
7,681
0
01 Oct 2018
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
516
1,987
0
09 Jun 2018
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
766
3,129
0
04 Jun 2018
Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning
Qimai Li
Zhichao Han
Xiao-Ming Wu
GNN
SSL
189
2,828
0
22 Jan 2018
1
2
Next