Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.01950
Cited By
v1
v2 (latest)
Score-based Pullback Riemannian Geometry: Extracting the Data Manifold Geometry using Anisotropic Flows
2 October 2024
Willem Diepeveen
Georgios Batzolis
Zakhar Shumaylov
Carola-Bibiane Schönlieb
DiffM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Score-based Pullback Riemannian Geometry: Extracting the Data Manifold Geometry using Anisotropic Flows"
17 / 17 papers shown
Title
Follow the Energy, Find the Path: Riemannian Metrics from Energy-Based Models
Louis Bethune
David Vigouroux
Yilun Du
Rufin VanRullen
Thomas Serre
Victor Boutin
DiffM
73
0
0
23 May 2025
Connecting the geometry and dynamics of many-body complex systems with message passing neural operators
N. Gabriel
N. Johnson
George Em Karniadakis
AI4CE
119
0
0
21 Feb 2025
Learning Distances from Data with Normalizing Flows and Score Matching
Peter Sorrenson
Daniel Behrend-Uriarte
Christoph Schnörr
Ullrich Kothe
114
2
0
12 Jul 2024
Metric Flow Matching for Smooth Interpolations on the Data Manifold
Kacper Kapusniak
Peter Potaptchik
Teodora Reu
Leo Zhang
Alexander Tong
Michael M. Bronstein
A. Bose
Francesco Di Giovanni
82
22
0
23 May 2024
Pulling back symmetric Riemannian geometry for data analysis
W. Diepeveen
77
3
0
11 Mar 2024
Score-based generative models learn manifold-like structures with constrained mixing
Wenliang Kevin Li
Ben Moran
DiffM
96
8
0
16 Nov 2023
Generalization in diffusion models arises from geometry-adaptive harmonic representations
Zahra Kadkhodaie
Florentin Guth
Eero P. Simoncelli
Stéphane Mallat
AI4CE
DiffM
138
84
0
04 Oct 2023
Your diffusion model secretly knows the dimension of the data manifold
Jan Stanczuk
Georgios Batzolis
Teo Deveney
Carola-Bibiane Schönlieb
DiffM
94
29
0
23 Dec 2022
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
Piotr Tempczyk
Rafał Michaluk
Łukasz Garncarek
Przemysław Spurek
Jacek Tabor
Adam Goliñski
110
28
0
29 Jun 2022
Riemannian Metric Learning via Optimal Transport
Christopher Scarvelis
Justin Solomon
OT
84
13
0
18 May 2022
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
510
6,599
0
26 Nov 2020
NVAE: A Deep Hierarchical Variational Autoencoder
Arash Vahdat
Jan Kautz
BDL
132
919
0
08 Jul 2020
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
757
10,591
0
17 Feb 2020
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
233
778
0
10 Jun 2019
A Locally Adaptive Normal Distribution
Georgios Arvanitidis
Lars Kai Hansen
Søren Hauberg
91
29
0
08 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
279
3,730
0
26 May 2016
Testing the Manifold Hypothesis
Charles Fefferman
S. Mitter
Hariharan Narayanan
175
537
0
01 Oct 2013
1