Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2409.15771
Cited By
Zero-shot forecasting of chaotic systems
24 September 2024
Yuanzhao Zhang
William Gilpin
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Zero-shot forecasting of chaotic systems"
22 / 72 papers shown
Title
Next Generation Reservoir Computing
D. Gauthier
Erik Bollt
Aaron Griffith
W. A. S. Barbosa
73
410
0
14 Jun 2021
Monash Time Series Forecasting Archive
Rakshitha Godahewa
Christoph Bergmeir
Geoffrey I. Webb
Rob J. Hyndman
Pablo Montero-Manso
AI4TS
65
159
0
14 May 2021
RoFormer: Enhanced Transformer with Rotary Position Embedding
Jianlin Su
Yu Lu
Shengfeng Pan
Ahmed Murtadha
Bo Wen
Yunfeng Liu
278
2,453
0
20 Apr 2021
Data-driven Prediction of General Hamiltonian Dynamics via Learning Exactly-Symplectic Maps
Ren-Chuen Chen
Molei Tao
55
52
0
09 Mar 2021
Modern Koopman Theory for Dynamical Systems
Steven L. Brunton
M. Budišić
E. Kaiser
J. Nathan Kutz
AI4CE
97
417
0
24 Feb 2021
Machine learning prediction of critical transition and system collapse
Ling-Wei Kong
Hua-wei Fan
C. Grebogi
Y. Lai
43
85
0
02 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
497
2,414
0
18 Oct 2020
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks
Keyulu Xu
Mozhi Zhang
Jingling Li
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
MLT
109
312
0
24 Sep 2020
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
762
42,055
0
28 May 2020
Incorporating Symmetry into Deep Dynamics Models for Improved Generalization
Rui Wang
Robin Walters
Rose Yu
AI4CE
111
175
0
08 Feb 2020
Meta-learning framework with applications to zero-shot time-series forecasting
Boris N. Oreshkin
Dmitri Carpov
Nicolas Chapados
Yoshua Bengio
UQCV
AI4TS
AI4CE
204
112
0
07 Feb 2020
Deep Double Descent: Where Bigger Models and More Data Hurt
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
119
942
0
04 Dec 2019
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
Colin Raffel
Noam M. Shazeer
Adam Roberts
Katherine Lee
Sharan Narang
Michael Matena
Yanqi Zhou
Wei Li
Peter J. Liu
AIMat
424
20,181
0
23 Oct 2019
Backpropagation Algorithms and Reservoir Computing in Recurrent Neural Networks for the Forecasting of Complex Spatiotemporal Dynamics
Pantelis R. Vlachas
Jaideep Pathak
Brian R. Hunt
T. Sapsis
M. Girvan
Edward Ott
Petros Koumoutsakos
AI4TS
61
391
0
09 Oct 2019
Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting
Shiyang Li
Xiaoyong Jin
Yao Xuan
Xiyou Zhou
Wenhu Chen
Yu Wang
Xifeng Yan
AI4TS
107
1,416
0
29 Jun 2019
Gated recurrent units viewed through the lens of continuous time dynamical systems
I. Jordan
Piotr A. Sokól
Il Memming Park
47
58
0
03 Jun 2019
N-BEATS: Neural basis expansion analysis for interpretable time series forecasting
Boris N. Oreshkin
Dmitri Carpov
Nicolas Chapados
Yoshua Bengio
AI4TS
110
1,054
0
24 May 2019
Shaping the learning landscape in neural networks around wide flat minima
Carlo Baldassi
Fabrizio Pittorino
R. Zecchina
MLT
69
83
0
20 May 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
232
1,650
0
28 Dec 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
414
5,111
0
19 Jun 2018
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
701
131,652
0
12 Jun 2017
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
595
15,882
0
12 Nov 2013
Previous
1
2