Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2409.10083
Cited By
Privately Learning Smooth Distributions on the Hypercube by Projections
16 September 2024
Clément Lalanne
Sébastien Gadat
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Privately Learning Smooth Distributions on the Hypercube by Projections"
38 / 38 papers shown
Title
Learning with Differentially Private (Sliced) Wasserstein Gradients
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
105
0
0
03 Feb 2025
MCMC for Bayesian nonparametric mixture modeling under differential privacy
Mario Beraha
Stefano Favaro
Vinayak Rao
52
1
0
15 Oct 2023
About the Cost of Central Privacy in Density Estimation
Clément Lalanne
Aurélien Garivier
Rémi Gribonval
50
3
0
26 Jun 2023
A Polynomial Time, Pure Differentially Private Estimator for Binary Product Distributions
Vikrant Singhal
73
9
0
13 Apr 2023
Private Statistical Estimation of Many Quantiles
Clément Lalanne
Aurélien Garivier
Rémi Gribonval
49
6
0
14 Feb 2023
On the Statistical Complexity of Estimation and Testing under Privacy Constraints
Clément Lalanne
Aurélien Garivier
Rémi Gribonval
53
7
0
05 Oct 2022
On rate optimal private regression under local differential privacy
László Gyorfi
Martin Kroll
39
8
0
31 May 2022
Membership Inference Attacks From First Principles
Nicholas Carlini
Steve Chien
Milad Nasr
Shuang Song
Andreas Terzis
Florian Tramèr
MIACV
MIALM
83
704
0
07 Dec 2021
Multivariate density estimation from privatised data: universal consistency and minimax rates
László Gyorfi
Martin Kroll
24
4
0
27 Jul 2021
Optimal Rates for Nonparametric Density Estimation under Communication Constraints
Jayadev Acharya
C. Canonne
Aditya Singh
Himanshu Tyagi
OT
47
12
0
21 Jul 2021
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation
Gavin Brown
Marco Gaboardi
Adam D. Smith
Jonathan R. Ullman
Lydia Zakynthinou
FedML
65
50
0
24 Jun 2021
The Permute-and-Flip Mechanism is Identical to Report-Noisy-Max with Exponential Noise
Zeyu Ding
Daniel Kifer
S. Saghaian
Thomas Steinke
Yuxin Wang
Yingtai Xiao
Qiang Yan
47
28
0
15 May 2021
Inference under Information Constraints III: Local Privacy Constraints
Jayadev Acharya
C. Canonne
Cody R. Freitag
Ziteng Sun
Himanshu Tyagi
65
35
0
20 Jan 2021
Strongly universally consistent nonparametric regression and classification with privatised data
Thomas B. Berrett
László Gyorfi
Harro Walk
35
16
0
31 Oct 2020
Permute-and-Flip: A new mechanism for differentially private selection
Ryan McKenna
Daniel Sheldon
158
50
0
23 Oct 2020
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
110
43
0
19 Oct 2020
CoinPress: Practical Private Mean and Covariance Estimation
Sourav Biswas
Yihe Dong
Gautam Kamath
Jonathan R. Ullman
63
116
0
11 Jun 2020
Differentially Private Assouad, Fano, and Le Cam
Jayadev Acharya
Ziteng Sun
Huanyu Zhang
FedML
59
59
0
14 Apr 2020
Private Mean Estimation of Heavy-Tailed Distributions
Gautam Kamath
Vikrant Singhal
Jonathan R. Ullman
78
100
0
21 Feb 2020
Private Hypothesis Selection
Mark Bun
Gautam Kamath
Thomas Steinke
Zhiwei Steven Wu
59
91
0
30 May 2019
Local differential privacy: Elbow effect in optimal density estimation and adaptation over Besov ellipsoids
C. Butucea
A. Dubois
Martin Kroll
Adrien Saumard
63
44
0
05 Mar 2019
The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy
T. Tony Cai
Yichen Wang
Linjun Zhang
68
168
0
12 Feb 2019
Private Selection from Private Candidates
Jingcheng Liu
Kunal Talwar
63
132
0
19 Nov 2018
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
90
151
0
01 May 2018
Collecting Telemetry Data Privately
Bolin Ding
Janardhan Kulkarni
Sergey Yekhanin
55
686
0
05 Dec 2017
Finite Sample Differentially Private Confidence Intervals
Vishesh Karwa
Salil P. Vadhan
60
194
0
10 Nov 2017
Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds
Mark Bun
Thomas Steinke
84
835
0
06 May 2016
Minimax Optimal Procedures for Locally Private Estimation
John C. Duchi
Martin J. Wainwright
Michael I. Jordan
73
435
0
08 Apr 2016
Concentrated Differential Privacy
Cynthia Dwork
G. Rothblum
70
452
0
06 Mar 2016
Privacy and Statistical Risk: Formalisms and Minimax Bounds
Rina Foygel Barber
John C. Duchi
PILM
67
92
0
15 Dec 2014
RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response
Ulfar Erlingsson
Vasyl Pihur
Aleksandra Korolova
96
1,992
0
25 Jul 2014
Adaptive pointwise estimation of conditional density function
Karine Bertin
C. Lacour
Vincent Rivoirard
96
39
0
28 Dec 2013
Local Privacy, Data Processing Inequalities, and Statistical Minimax Rates
John C. Duchi
Michael I. Jordan
Martin J. Wainwright
FedML
83
102
0
13 Feb 2013
Adaptive functional linear regression
Fabienne Comte
Jan Johannes
112
59
0
12 Dec 2011
Bandwidth selection in kernel density estimation: Oracle inequalities and adaptive minimax optimality
A. Goldenshluger
O. Lepski
379
245
0
06 Sep 2010
A statistical framework for differential privacy
Larry A. Wasserman
Shuheng Zhou
105
485
0
16 Nov 2008
What Can We Learn Privately?
S. Kasiviswanathan
Homin K. Lee
Kobbi Nissim
Sofya Raskhodnikova
Adam D. Smith
137
1,466
0
06 Mar 2008
Structural adaptation via
L
p
L_p
L
p
-norm oracle inequalities
A. Goldenshluger
O. Lepski
1.0K
66
0
19 Apr 2007
1