ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.11384
  4. Cited By
Data-Centric Machine Learning for Earth Observation: Necessary and
  Sufficient Features

Data-Centric Machine Learning for Earth Observation: Necessary and Sufficient Features

21 August 2024
Hiba Najjar
Marlon Nuske
Andreas Dengel
ArXivPDFHTML

Papers citing "Data-Centric Machine Learning for Earth Observation: Necessary and Sufficient Features"

4 / 4 papers shown
Title
From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic
  Review on Evaluating Explainable AI
From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI
Meike Nauta
Jan Trienes
Shreyasi Pathak
Elisa Nguyen
Michelle Peters
Yasmin Schmitt
Jorg Schlotterer
M. V. Keulen
C. Seifert
ELM
XAI
86
409
0
20 Jan 2022
Lightweight Temporal Self-Attention for Classifying Satellite Image Time
  Series
Lightweight Temporal Self-Attention for Classifying Satellite Image Time Series
Vivien Sainte Fare Garnot
Loic Landrieu
51
79
0
01 Jul 2020
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
244
4,667
0
21 Dec 2014
On the Properties of Neural Machine Translation: Encoder-Decoder
  Approaches
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches
Kyunghyun Cho
B. V. Merrienboer
Dzmitry Bahdanau
Yoshua Bengio
AI4CE
AIMat
237
6,775
0
03 Sep 2014
1